STEM-based University Pathway Encouraging Relationships with Chicago High schools in Automation, Robotics and Green Energy (SUPERCHARGE) is an NSF-sponsored project where university faculty and undergraduates from Illinois State University have designed informal, after-school engineering-related activities focusing on robotics, green energy, and automation. An emphasis is placed on activities and partnerships that promote knowledge, engagement, and interest in STEM fields in underserved schools and communities. This resource exchange presents activities from the final unit of the program's first year. In this project, high school students will build and experiment with a smart wireless weather station and indoor climate console with the goal of collecting and analyzing data to learn about the climate in their community while fostering STEM skills and interest in college and career pathways.
more »
« less
Building an Innovation Pathway to Data Careers
Three members of an NSF-funded CSforAll Research Practice Partnership will share their experiences and varied perspectives regarding the curricula and implementation strategies designed to build, foster, and support an Innovation Pathway to Data Careers through a partnership that includes high school and community college educators and industry and community partners. The team designed, developed, and tested high school curriculum introducing and highlighting data content in four courses: Civics+Data, Algebra II+Data, Visualization+Data, and Python+Data. This work was informed by prior NSF funding focused on developing data pathways at the community college level. The wide range of resources available to educators developing data pathways from multiple NSF projects are also included.
more »
« less
- Award ID(s):
- 2031479
- PAR ID:
- 10653990
- Publisher / Repository:
- ACM SIGITE
- Date Published:
- Subject(s) / Keyword(s):
- Data Science Career Pathways Data Literacy
- Format(s):
- Medium: X
- Location:
- El Paso, Texas
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
STEM-based University Pathway Encouraging Relationships with Chicago High schools in Automation, Robotics and Green Energy (SUPERCHARGE) is an NSF-sponsored project where university faculty and undergraduates from Illinois State University have designed informal, after-school engineering-related activities focusing on robotics, green energy, and automation. An emphasis is placed on activities and partnerships that promote knowledge, engagement, and interest in STEM fields in underserved schools and communities. This resource exchange presents activities from the final unit of the program's first year. In this project, high school students will build and experiment with a smart wireless weather station and indoor climate console with the goal of collecting and analyzing data to learn about the climate in their community while fostering STEM skills and interest in college and career pathways.more » « less
-
null (Ed.)With the rise in manufacturing jobs in the United States, companies are having a difficult time filling the job openings for skilled production workers. It takes an average of two months to fill these positions. This study is designed to introduce the fundamental concepts of manufacturing and demonstrate these concepts through hands-on simulation of the different manufacturing paradigms. The paper is the result of the authors’ participation in a six-week NSF RET program at Penn State Behrend where high school and community college educators worked together to develop curriculum for high school students. Lesson plans, handouts, and required material lists were developed and tested. Surveys conducted after the simulation experiment provided improvements for the exercise. The simulations were then implemented in high school classrooms to improve the awareness of manufacturing among high school students and develop their technical and professional skills. By understanding the evolution of manufacturing and becoming aware of the need to gain advanced skills required for today, students will be encouraged to consider pursuing careers in manufacturing.more » « less
-
The goal of this program, funded by the National Science Foundation Advanced Technological Education (NSF ATE) program, is to provide additional professional and technical skills to cohorts of high school students through a Saturday Program. The program has provided inner-city high school students with out-of-school, hands-on educational experiences focusing on both professional and technical skills. Participant demographics will be discussed in this paper as diversity is a key objective of the program. The program utilizes industry-driven, project-based learning (PBL) and lessons in career and college readiness to prepare students for the workforce. Each student session consists of five consecutive Saturdays and is taught by a team of high school teachers, community college faculty, and instructors with expertise in professional skills, teambuilding, leadership, technical writing, coding, and STEM disciplines. The program is held on community college campuses as a way to show students that they are welcome in a college environment, which has inspired participants to have confidence in their own abilities to attend college and pursue educational and career goals in technology fields. Principals from participating high schools have commented that students who attended the Program have demonstrated an improvement in their academics and behavior due to the knowledge of professional and technical skills that they have gleaned from the program. The program’s leadership team disseminates best practices through presentations, social media, publications, and workshops at national conferences. The virtual four-day Summer Teachers’ Workshop allows high school and community college educators from throughout the United States to experience the same program that is used for the high school students. Although the workshop is virtual, participants are provided with materials and supplies, so they have the same hands-on experiences as the students in the Saturday program.more » « less
-
Manufacturing is undergoing rapid changes due to the demands of product complexity and variety, and therefore factories are demanded to become smarter and more efficient. This transformation is known as advanced manufacturing and will require a new generation of skilled employees. There is a huge lack of qualified personnel in advanced manufacturing stemming from a lack of student interest compounded with a lack of experienced teachers who usually motivate students. This paper describes the findings of an NSF RET project at an US university that successfully addresses the common need to produce STEM graduates in the advanced manufacturing area. We recruited fifteen high school and community college STEM educators for a six-week immersive summer research experience in the state-of-the-art robotics laboratory. At the end of their research workshop, they developed customized hands-on advanced manufacturing curricula for their students. This project produced fifteen competent high school and community college educators, who are capable of blending research with educational activities at their institutions, motivating students for STEM degrees, and building long-term collaborative partnerships in the region. This paper will share some of their successful research projects, how they translated their research into actionable curriculum modules, and some lessons learned from implementations. This paper will also explain the evaluation process and share the results. In view of the pre-survey and post-survey data analyses, it can be concluded that educator participants of the program increased their knowledge and research experiences at very high-quality research facilities and under expert guidance.more » « less
An official website of the United States government

