We present a new gauging of maximal supergravity in five spacetime dimensions with gauge group containing ISO(5), involving the local scaling symmetry of the metric, and admitting a supersymmetric anti–de Sitter vacuum. We show this maximal supergravity to arise by consistent truncation of M theory on the (nonspherical, nonparallelizable) six-dimensional geometry associated to a stack of M5 branes wrapped on a smooth Riemann surface. The existence of this truncation allows us to holographically determine the complete, universal spectrum of light operators of the dual four-dimensional theory of class . We then compute holographically the superconformal index of the dual field theory at large , finding perfect agreement with previously known field theory results in specific limits. Published by the American Physical Society2025
more »
« less
Noninvertible symmetries in 2D from type IIB string theory
We propose a top-down approach to noninvertible symmetries in two-dimensional quantum field theories and their three-dimensional (3D) associated symmetry topological field theories. We focus on the gauge theory engineered on D1-branes probing a particular Calabi-Yau 4-fold singularity. We show how to derive the symmetry topological field theory, a 3D Dijkgraaf-Witten theory, from the IIB supergravity under dimensional reduction. We also identify branes behind the noninvertible topological lines by dimensionally reducing their world volume actions. The action of noninvertible lines on charged local operators is then realized as the Hanany-Witten transition. Published by the American Physical Society2024
more »
« less
- Award ID(s):
- 2014086
- PAR ID:
- 10654327
- Publisher / Repository:
- Physical Review D
- Date Published:
- Journal Name:
- Physical Review D
- Volume:
- 110
- Issue:
- 6
- ISSN:
- 2470-0010
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The global symmetries of a -dimensional quantum field theory (QFT) can, in many cases, be captured in terms of a ( )-dimensional symmetry topological field theory (SymTFT). In this work we construct a ( )-dimensional theory which governs the symmetries of QFTs with multiple sectors which have connected correlators that admit a decoupling limit. The associated symmetry field theory decomposes into a SymTree, namely a treelike structure of SymTFTs fused along possibly nontopological junctions. In string-realized multisector QFTs, these junctions are smoothed out in the extradimensional geometry, as we demonstrate in examples. We further use this perspective to study the fate of higher-form symmetries in the context of holographic large averaging where the topological sectors of different large replicas become dressed by additional extended operators associated with the SymTree. Published by the American Physical Society2024more » « less
-
We elaborate on a recently proposed geometric framework for scalar effective field theories. Starting from the action, a metric can be identified that enables the construction of geometric quantities on the associated functional manifold. These objects transform covariantly under general field redefinitions that relate different operator bases, including those involving derivatives. We present a novel geometric formula for the amplitudes of the theory, where the vertices in Feynman diagrams are replaced by their geometrized counterparts. This makes the on-shell covariance of amplitudes manifest, providing the link between functional geometry and effective field theories. Published by the American Physical Society2025more » « less
-
We present a mesoscale field theory unifying the modeling of growth, elasticity, and dislocations in quasicrystals. The theory is based on the amplitudes entering their density-wave representation. We introduce a free energy functional for complex amplitudes and assume nonconserved dissipative dynamics to describe their evolution. Elasticity, including phononic and phasonic deformations, along with defect nucleation and motion, emerges self-consistently by prescribing only the symmetry of quasicrystals. Predictions on the formation of semicoherent interfaces and dislocation kinematics are given. Published by the American Physical Society2024more » « less
-
We discuss numerical aspects of instantons in two- and three-dimensional theories with an internal symmetry group, the so-called -vector model. By combining asymptotic transseries expansions for large arguments with convergence acceleration techniques, we obtain high-precision values for certain integrals of the instanton that naturally occur in loop corrections around instanton configurations. Knowledge of these numerical properties is necessary in order to evaluate corrections to the large-order factorial growth of perturbation theory in theories. The results contribute to the understanding of the mathematical structures underlying the instanton configurations. Published by the American Physical Society2024more » « less
An official website of the United States government

