Abstract BackgroundRNA sequencing is a powerful approach to quantify the genome-wide distribution of mRNA molecules in a population to gain deeper understanding of cellular functions and phenotypes. However, unlike eukaryotic cells, mRNA sequencing of bacterial samples is more challenging due to the absence of a poly-A tail that typically enables efficient capture and enrichment of mRNA from the abundant rRNA molecules in a cell. Moreover, bacterial cells frequently contain 100-fold lower quantities of RNA compared to mammalian cells, which further complicates mRNA sequencing from non-cultivable and non-model bacterial species. To overcome these limitations, we report EMBR-seq (Enrichment of mRNA by Blocked rRNA), a method that efficiently depletes 5S, 16S and 23S rRNA using blocking primers to prevent their amplification. ResultsEMBR-seq results in 90% of the sequenced RNA molecules from anE. coliculture deriving from mRNA. We demonstrate that this increased efficiency provides a deeper view of the transcriptome without introducing technical amplification-induced biases. Moreover, compared to recent methods that employ a large array of oligonucleotides to deplete rRNA, EMBR-seq uses a single or a few oligonucleotides per rRNA, thereby making this new technology significantly more cost-effective, especially when applied to varied bacterial species. Finally, compared to existing commercial kits for bacterial rRNA depletion, we show that EMBR-seq can be used to successfully quantify the transcriptome from more than 500-fold lower starting total RNA. ConclusionsEMBR-seq provides an efficient and cost-effective approach to quantify global gene expression profiles from low input bacterial samples.
more »
« less
This content will become publicly available on March 11, 2026
Duplexed direct RNA sequencing protocol using polyadenylation and polyuridylation
ABSTRACT Oxford Nanopore Technologies provides multiplexing options for DNA and cDNA sequencing, but not for direct RNA sequencing. Here we describe a duplexing approach and validate it by simultaneously sequencing theSaccharomyces cerevisiaerRNA from wild type and knockout that have differential rRNA modifications, successfully demultiplexing the data using bioinformatics approaches.
more »
« less
- Award ID(s):
- 2025384
- PAR ID:
- 10654436
- Editor(s):
- Roux, Simon
- Publisher / Repository:
- ASM
- Date Published:
- Journal Name:
- Microbiology Resource Announcements
- Volume:
- 14
- Issue:
- 3
- ISSN:
- 2576-098X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
IntroductionBacteria are frequently isolated from surfaces in cleanrooms, where astromaterials are curated, at NASA’s Lyndon B. Johnson Space Center (JSC).Bacillusspecies are of particular interest because endospores can endure extreme conditions. Current monitoring programs at JSC rely on culturing microbes from swabs of surfaces followed by identification by 16S rRNA sequencing and the VITEK 2 Compact bacterial identification system. These methods have limited power to resolveBacillusspecies. Whole genome sequencing (WGS) is the current standard for bacterial identification but is expensive and time-consuming. Matrix-assisted laser desorption - time of flight mass spectrometry (MALDI-TOF MS), provides a rapid, low-cost, method of identifying bacterial isolates and has a higher resolution than 16S rRNA sequencing, particularly forBacillusspecies; however, few studies have compared this method to WGS for identification ofBacillusspecies isolated from cleanrooms. MethodsTo address this, we selected 15 isolates for analysis with WGS and MALDI-TOF MS. Hybrid next-generation (Illumina) and 3rd-generation (nanopore) sequencing were used to draft genomes. Mass spectra, generated with MALDI-TOF MS, were processed with custom scripts to identify clusters of closely related isolates. ResultsMALDI-TOF MS and WGS identified 13/15 and 9/14 at the species level, respectively, and clusters of species generated from MALDI-TOF MS showed good agreement, in terms of congruence of partitioning, with phylotypes generated with WGS. Pairs of strains that were > 94% similar to each other, in terms of average amino acid identity (AAI) predicted by WGS, consistently showed cosine similarities of mass spectra >0.8. The only discordance was for a pair of isolates that were classified asPaenibacillusspecies. This pair showed relatively high similarity (0.85) in terms of MALDI-TOF MS but only 85% similarity in terms of AAI. In addition, some strains isolated from cleanrooms at the JSC appeared closely related to strains isolated from spacecraft assembly cleanrooms. DiscussionSince MALDI-TOF MS costs less than whole genome sequencing and offers a throughput of hundreds of isolates per hour, this approach appears to offer a cost-efficient option for identifyingBacillusspecies, and related microbes, isolated during routine monitoring of cleanrooms and similar built environments.more » « less
-
Abstract BackgroundInsects are an important reservoir of viral biodiversity, but the vast majority of viruses associated with insects have not been discovered. Recent studies have employed high-throughput RNA sequencing, which has led to rapid advances in our understanding of insect viral diversity. However, insect genomes frequently contain transcribed endogenous viral elements (EVEs) with significant homology to exogenous viruses, complicating the use of RNAseq for viral discovery. MethodsIn this study, we used a multi-pronged sequencing approach to study the virome of an important agricultural pest and prolific vector of plant pathogens, the potato aphidMacrosiphum euphorbiae. We first used rRNA-depleted RNAseq to characterize the microbes found in individual insects. We then used PCR screening to measure the frequency of two heritable viruses in a local aphid population. Lastly, we generated a quality draft genome assembly forM. euphorbiaeusing Illumina-corrected Nanopore sequencing to identify transcriptionally active EVEs in the host genome. ResultsWe found reads from two insect-specific viruses (aFlavivirusand anAmbidensovirus) in our RNAseq data, as well as a parasitoid virus (Bracovirus), a plant pathogenic virus (Tombusvirus), and two phages (Acinetobacter and APSE). However, our genome assembly showed that part of the ‘virome’ of this insect can be attributed to EVEs in the host genome. ConclusionOur work shows that EVEs have led to the misidentification of aphid viruses from RNAseq data, and we argue that this is a widespread challenge for the study of viral diversity in insects.more » « less
-
Abstract BackgroundThe Spacecraft Assembly Facility (SAF) at the NASA’s Jet Propulsion Laboratory is the primary cleanroom facility used in the construction of some of the planetary protection (PP)-sensitive missions developed by NASA, including the Mars 2020 Perseverance Rover that launched in July 2020. SAF floor samples (n=98) were collected, over a 6-month period in 2016 prior to the construction of the Mars rover subsystems, to better understand the temporal and spatial distribution of bacterial populations (total, viable, cultivable, and spore) in this unique cleanroom. ResultsCleanroom samples were examined for total (living and dead) and viable (living only) microbial populations using molecular approaches and cultured isolates employing the traditional NASA standard spore assay (NSA), which predominantly isolated spores. The 130 NSA isolates were represented by 16 bacterial genera, of which 97% were identified as spore-formers via Sanger sequencing. The most spatially abundant isolate wasBacillus subtilis, and the most temporally abundant spore-former wasVirgibacillus panthothenticus. The 16S rRNA gene-targeted amplicon sequencing detected 51 additional genera not found in the NSA method. The amplicon sequencing of the samples treated with propidium monoazide (PMA), which would differentiate between viable and dead organisms, revealed a total of 54 genera: 46 viable non-spore forming genera and 8 viable spore forming genera in these samples. The microbial diversity generated by the amplicon sequencing corresponded to ~86% non-spore-formers and ~14% spore-formers. The most common spatially distributed genera wereSphinigobium,Geobacillus, andBacilluswhereas temporally distributed common genera wereAcinetobacter,Geobacilllus, andBacillus. Single-cell genomics detected 6 genera in the sample analyzed, with the most prominent beingAcinetobacter. ConclusionThis study clearly established that detecting spores via NSA does not provide a complete assessment for the cleanliness of spacecraft-associated environments since it failed to detect several PP-relevant genera that were only recovered via molecular methods. This highlights the importance of a methodological paradigm shift to appropriately monitor bioburden in cleanrooms for not only the aeronautical industry but also for pharmaceutical, medical industries, etc., and the need to employ molecular sequencing to complement traditional culture-based assays.more » « less
-
IntroductionWood digestion in insects relies on the maintenance of a mosaic of numerous microhabitats, each colonized by distinct microbiomes. Understanding the division of digestive labor between these microhabitats- is central to understanding the physiology and evolution of symbiotic wood digestion. A microhabitat that has emerged to be of direct relevance to the process of lignocellulose digestion is the surface of ingested plant material. Wood particles in the guts of some termites are colonized by a specialized bacterial fiber-digesting microbiome, but whether this represents a widespread strategy among insect lineages that have independently evolved wood-feeding remains an open question. MethodsIn this study, we investigated the bacterial communities specifically associated with wood fibers in the gut of the passalid beetleOdontotaenius disjunctus. We developed a Percoll-based centrifugation method to isolate and enrich the wood particles from the anterior hindgut, allowing us to access the wood fibers and their associated microbiome. We then performed assays of enzyme activity and used short-read and long-read amplicon sequencing of the 16S rRNA gene to identify the composition of the fiber-associated microbiome. ResultsOur assays demonstrated that the anterior hindgut, which houses a majority of the bacterial load, is an important site for lignocellulose digestion. Wood particles enriched from the anterior hindgut contribute to a large proportion of the total enzyme activity. The sequencing revealed thatO. disjunctus, like termites, harbors a distinct fiber-associated microbiome, but notably, its community is enriched in insect-specific groups ofLactococcusandTuricibacter. DiscussionOur study underscores the importance of microhabitats in fostering the complex symbiotic relationships between wood-feeding insects and their microbiomes. The discovery of distinct fiber-digesting symbionts inO. disjunctus, compared to termites, highlights the diverse evolutionary paths insects have taken to adapt to a challenging diet.more » « less
An official website of the United States government
