skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 1, 2026

Title: Towards a unified approach in managing resistance to vaccines, drugs, and pesticides
ABSTRACT Everywhere, pests and pathogens evolve resistance to our control efforts, impairing human health and welfare. Developing sustainable solutions to this problem requires working with evolved immune and ecological systems, rather than against these evolutionary forces. We advocate a transdisciplinary approach to resistance based on an evolutionary foundation informed by the concepts of integrated pest management and One Health. Diverse, multimodal management approaches create a more challenging environment for the evolution of resistance. Given our permanent evolutionary and ecological relationships with pests and pathogens, responses to most biological threats to health and agriculture should seek sustainable harm reduction rather than eradication.  more » « less
Award ID(s):
1922560
PAR ID:
10654465
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Biological Reviews
Volume:
100
Issue:
3
ISSN:
1464-7931
Page Range / eLocation ID:
1067 to 1082
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Locusts and other migratory grasshoppers are transboundary pests. Monitoring and control, therefore, involve a complex system made up of social, ecological, and technological factors. Researchers and those involved in active management are calling for more integration between these siloed but often interrelated sectors. In this paper, we bring together 38 coauthors from six continents and 34 unique organizations, representing much of the social-ecological-technological system (SETS) related to grasshopper and locust management and research around the globe, to introduce current topics of interest and review recent advancements. Together, the paper explores the relationships, strengths, and weaknesses of the organizations responsible for the management of major locust-affected regions. The authors cover topics spanning humanities, social science, and the history of locust biological research and offer insights and approaches for the future of collaborative sustainable locust management. These perspectives will help support sustainable locust management, which still faces immense challenges such as fluctuations in funding, focus, isolated agendas, trust, communication, transparency, pesticide use, and environmental and human health standards. Arizona State University launched the Global Locust Initiative (GLI) in 2018 as a response to some of these challenges. The GLI welcomes individuals with interests in locusts and grasshoppers, transboundary pests, integrated pest management, landscape-level processes, food security, and/or cross-sectoral initiatives. 
    more » « less
  2. Bee declines have been partly attributed to the impacts of invasive or emerging parasite outbreaks. For western honeybees,Apis mellifera, major losses are associated with the virus-vectoring mite,Varroa destructor. In response, beekeepers have focused breeding efforts aimed at conferring resistance to this key parasite. One method of many is survival-based beekeeping where colonies that survive despite significantVarroainfestations produce subsequent colonies. We argue that this ‘hands-off’ approach will not always lead toVarroaresistance evolving but rather tolerance. Tolerance minimizes host fitness costs of parasitism without reducing parasite abundance, whereas resistance either prevents parasitism outright or keeps parasitism intensity low. With clear epidemiological distinctions, and as honeybee disease dynamics impact other wild bees owing to shared pathogens, we discuss why tolerance outcomes in honeybee breeding have important implications for wider pollinator health. Crucially, we argue that unintentional selection for tolerance will not only lead to more spillover from honeybees but may also select for pathogens that are more virulent in wild bees leading to ‘tragedies of tolerance’. These tragedies can be avoided through successful breeding regimes that specifically select for lowVarroa. We emphasize how insights from evolutionary ecology can be applied in ecologically responsible honeybee management. 
    more » « less
  3. ABSTRACT Herbicide resistance in agricultural weeds has become one of the greatest challenges for sustainable crop production. The repeated evolution of herbicide resistance provides an excellent opportunity to study the genetic and physiological basis of the resistance phenotype and the evolutionary responses to human‐mediated selection pressures.Lolium multiflorumis a ubiquitous weed that has evolved herbicide resistance repeatedly around the world in various cropping systems. We assembled and annotated a chromosome‐scale genome forL. multiflorumand elucidated the genetic architecture of paraquat resistance by performing quantitative trait locus analysis, genome‐wide association studies, genetic divergence analysis and transcriptome analyses from paraquat‐resistant and ‐susceptibleL. multiflorumplants. We identified two regions on chromosome 5 that were associated with paraquat resistance. These regions both showed evidence for positive selection among the resistant populations we sampled, but the effects of this selection on the genome differed, implying a complex evolutionary history. In addition, these regions contained candidate genes that encoded cellular transport functions, including a novel multidrug and toxin extrusion (MATE) protein and a cation transporter previously shown to interact with polyamines. Given thatL. multiflorumis a weed and a cultivated crop species, the genomic resources generated will prove valuable to a wide spectrum of the plant science community. Our work contributes to a growing body of knowledge on the underlying evolutionary and ecological dynamics of rapid adaptation to strong anthropogenic selection pressure that could help initiate efforts to improve weed management practices in the long term for a more sustainable agriculture. 
    more » « less
  4. Maize is an important food and fuel crop globally. Ear rots, caused by fungal pathogens, are some of the most detrimental maize diseases, due to reduced grain yield and the production of harmful mycotoxins. Mycotoxins are naturally occurring toxins produced by certain fungal species that can cause acute and chronic health issues in humans and animals that consume mycotoxin-contaminated grain. Pathogens can infect the developing ear through silks, or through wounds in the ears produced by pests. Plants naturally develop genetic resistance to pathogens. The maize genes involved in resistance to the pathogen may be different, depending on whether the ear was infected via silks or wounds. To differentiate between these two forms of resistance, natural infections can be reproduced by injecting inoculum through the silk channel, or by producing wounds using a needle, and introducing inoculum directly onto developing ears. Our protocol describes a technique used to inoculate developing maize ears withFusarium graminearum, one of the fungal species that causes ear rot. We describe both silk channel and side needle inoculation techniques. Our protocol uses a backpack inoculator for both methods of infection, allowing for high-throughput inoculations, which are necessary for large field experiments. After harvest, the ears are visually rated on a percentage of disease scale. The protocol results in quantitative data that can be used for research on elucidating genetic resistance to fungal pathogens to assist breeding selections, and to understand plant–pathogen interactions of ear rots in maize. 
    more » « less
  5. Abstract Most emerging pathogens can infect multiple species, underlining the importance of understanding the ecological and evolutionary factors that allow some hosts to harbour greater infection prevalence and share pathogens with other species. However, our understanding of pathogen jumps is based primarily around viruses, despite bacteria accounting for the greatest proportion of zoonoses. Because bacterial pathogens in bats (order Chiroptera) can have conservation and human health consequences, studies that examine the ecological and evolutionary drivers of bacterial prevalence and barriers to pathogen sharing are crucially needed. Here were studied haemotropicMycoplasmaspp. (i.e., haemoplasmas) across a species‐rich bat community in Belize over two years. Across 469 bats spanning 33 species, half of individuals and two‐thirds of species were haemoplasma positive. Infection prevalence was higher for males and for species with larger body mass and colony sizes. Haemoplasmas displayed high genetic diversity (21 novel genotypes) and strong host specificity. Evolutionary patterns supported codivergence of bats and bacterial genotypes alongside phylogenetically constrained host shifts. Bat species centrality to the network of shared haemoplasma genotypes was phylogenetically clustered and unrelated to prevalence, further suggesting rare—but detectable—bacterial sharing between species. Our study highlights the importance of using fine phylogenetic scales when assessing host specificity and suggests phylogenetic similarity may play a key role in host shifts not only for viruses but also for bacteria. Such work more broadly contributes to increasing efforts to understand cross‐species transmission and the epidemiological consequences of bacterial pathogens. 
    more » « less