Locust outbreaks have long been a very serious problem for agriculture and livelihoods in many countries globally. This article is an introduction to a Special Issue of the journal Agronomy devoted to the management of these pests. Although not exhaustive, the nineteen articles herein cover a variety of species, many regions of the world and many aspects of pest locust management and research in the early 21st century. This book is a source of information and reflection, as well as a resource, to support new areas of investigation and practice contributing to the process of developing sustainable solutions for locust invasions.
more »
« less
Global perspectives and transdisciplinary opportunities for locust and grasshopper pest management and research
Locusts and other migratory grasshoppers are transboundary pests. Monitoring and control, therefore, involve a complex system made up of social, ecological, and technological factors. Researchers and those involved in active management are calling for more integration between these siloed but often interrelated sectors. In this paper, we bring together 38 coauthors from six continents and 34 unique organizations, representing much of the social-ecological-technological system (SETS) related to grasshopper and locust management and research around the globe, to introduce current topics of interest and review recent advancements. Together, the paper explores the relationships, strengths, and weaknesses of the organizations responsible for the management of major locust-affected regions. The authors cover topics spanning humanities, social science, and the history of locust biological research and offer insights and approaches for the future of collaborative sustainable locust management. These perspectives will help support sustainable locust management, which still faces immense challenges such as fluctuations in funding, focus, isolated agendas, trust, communication, transparency, pesticide use, and environmental and human health standards. Arizona State University launched the Global Locust Initiative (GLI) in 2018 as a response to some of these challenges. The GLI welcomes individuals with interests in locusts and grasshoppers, transboundary pests, integrated pest management, landscape-level processes, food security, and/or cross-sectoral initiatives.
more »
« less
- PAR ID:
- 10509379
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Pensoft Publishers
- Date Published:
- Journal Name:
- Journal of Orthoptera Research
- Volume:
- 33
- Issue:
- 2
- ISSN:
- 1082-6467
- Page Range / eLocation ID:
- 169 to 216
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Locusts are grasshoppers that can migrate en masse and devastate food security. Plant nutrient content is a key variable influencing population dynamics, but the relationship is not straightforward. For an herbivore, plant quality depends not only on the balance of nutrients and antinutrients in plant tissues, which is influenced by land use and climate change, but also on the nutritional state and demands of the herbivore, as well as its capacity to extract nutrients from host plants. In contrast to the concept of a positive relationship between nitrogen or protein concentration and herbivore performance, a five-decade review of lab and field studies indicates that equating plant N to plant quality is misleading because grasshoppers respond negatively or neutrally to increasing plant N just as often as they respond positively. For locusts specifically, low-N environments are actually beneficial because they supply high energy rates that support migration. Therefore, intensive land use, such as continuous grazing or cropping, and elevated ambient CO2levels that decrease the protein:carbohydrate ratios of plants are predicted to broadly promote locust outbreaks.more » « less
-
Climate change expected to improve digestive rate and trigger range expansion in outbreaking locustsAbstract Global climate change will probably exacerbate crop losses from insect pests, reducing agricultural production, and threatening food security. To predict where crop losses will occur, scientists have mainly used correlative models of species' distributions, but such models are unreliable when extrapolated to future environments. To minimize extrapolation, we developed mechanistic and hybrid models that explicitly capture range‐limiting processes, and we explored how incorporating mechanisms altered the projected impacts of climate change for an agricultural pest, the South American locust (Schistocerca cancellata). Because locusts are generalist herbivores surrounded by food, their population growth may be limited by thermal effects on digestion more than food availability. To incorporate this mechanism into a distribution model, we measured the thermal effects on the consumption and defecation of field‐captured locusts and used these data to model energy gain in current and future climates. We then created hybrid models by using outputs of the mechanistic model as predictor variables in correlative models, estimating the potential distribution of gregarious outbreaking locusts based on multiple predictor sets, modeling algorithms, and climate scenarios. Based on the mechanistic model, locusts can assimilate relatively high amounts of energy throughout temperate and tropical South America; however, correlative and hybrid modeling revealed that most tropical areas are unsuitable for locusts. When estimating current distributions, the top‐ranked model was always the one fit with mechanistic predictors (i.e., the hybrid model). When projected to future climates, top‐ranked hybrid models projected range expansions that were 23%–30% points smaller than those projected by correlative models. Therefore, a combination of the correlative and mechanistic approaches bracketed the potential outcomes of climate change and enhanced confidence where model projections agreed. Because all models projected a poleward range expansion under climate change, agriculturists should consider enhanced monitoring and the management of locusts near the southern margin of the range.more » « less
-
Locusts exhibit an extreme form of phenotypic plasticity and can exist as two alternative phenotypes, known as solitarious and gregarious phases. These phases, which can transform from one to another depending on local population density, show distinctly different behavioural characteristics. The proximate mechanisms of behavioural phase polyphenism have been well studied in the desert locust Schistocerca gregaria and the migratory locust Locusta migratoria, and what is known in these species is often treated as a general feature of locusts. However, this approach might be flawed, given that there are about 20 locust species that have independently evolved phase polyphenism. Using the Central American locust, Schistocerca piceifrons as a study system, we characterised the time-course of behavioural phase change using standard locust behavioural assays, using both a logistic regression-based model and analyses of separate behavioural variables. We found that for nymphs of S. piceifrons, solitarisation was a relatively fast, two-step process, but that gregarisation was a much slower process. Additionally, the density of the gregarisation treatment seemed to have no effect on the rate of phase change. These data are at odds with what we know about the time-course of behavioural phase change in S. gregaria, suggesting that the mechanisms of locust phase polyphenism in these two species are different and may not be phylogenetically constrained. Our study represents the most in-depth study of behavioural gregarisation and solitarisation in locusts to date.more » « less
-
ABSTRACT Migration allows animals to track favorable environments and avoid harmful conditions. However, migration is energetically costly, so migrating animals must prepare themselves by increasing their energy stores. Despite the importance of locust migratory swarms, we still understand little about the physiology of locust migration. During long-distance flight, locusts rely on lipid oxidation, despite the fact that lipids are relatively rare in their leaf-based diets. Therefore, locusts and other insect herbivores synthesize and store lipid from ingested carbohydrates, which are also important for initial flight. These data suggest that diets high in carbohydrate should increase lipid stores and the capacity for migratory flight in locusts. As predicted, locust lipid stores and flight performance increased with an increase in the relative carbohydrate content in their food. However, locust flight termination was not associated with complete lipid depletion. We propose potential testable mechanisms that might explain how macronutrient consumption can affect flight endurance.more » « less
An official website of the United States government

