skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 11, 2026

Title: Curvature-Dependent Electrochemo-Mechanics of Silicon during Electrochemical Cycling
Silicon is an emerging anode material due to its high lithium storage capacity. While some commercial batteries now include silicon particles, porous three-dimensional (3D) scaffolded silicon electrodes may enable higher silicon loading by accommodating the silicon volume expansion during lithiation without significant electrode swelling. However, the electrochemomechanical response of silicon films on metal scaffolds remains poorly understood due to the complex scaffold morphology. We explore the role of scaffold curvature in the cycling behavior of silicon films and show that different curvatures exhibit distinctive failure modes. Negative curvature leads to crack opening from tensile and compressive stresses. Positive curvature induces tensile stress-driven buckling. Zero curvature exhibits fragmentation. The electrode morphology and chemistry for these systems are evaluated via scanning transmission electron microscopy with energy-dispersive X-ray spectroscopy (STEM-EDS). COMSOL Multiphysics simulations support that the electrochemo-mechanics of silicon are curvature-dependent. These findings point toward design strategies for 3D architected silicon anodes with improved cycling integrity.  more » « less
Award ID(s):
2037898
PAR ID:
10654473
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
ACS Publications
Date Published:
Journal Name:
ACS Energy Letters
Volume:
10
Issue:
7
ISSN:
2380-8195
Page Range / eLocation ID:
3388 to 3394
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Transition metal dichalcogenides (TMDs) such as MoSe2 have continued to generate interest in the engineering community because of their unique layered morphology—the strong in-plane chemical bonding between transition metal atoms sandwiched between two chalcogen atoms and the weak physical attraction between adjacent TMD layers provides them with not only chemical versatility but also a range of electronic, optical, and chemical properties that can be unlocked upon exfoliation into individual TMD layers. Such a layered morphology is particularly suitable for ion intercalation as well as for conversion chemistry with alkali metal ions for electrochemical energy storage applications. Nonetheless, host of issues including fast capacity decay arising due to volume changes and from TMD’s degradation reaction with electrolyte at low discharge potentials have restricted use in commercial batteries. One approach to overcome barriers associated with TMDs’ chemical stability functionalization of TMD surfaces by chemically robust precursor-derived ceramics or PDC materials, such as silicon oxycarbide (SiOC). SiOC-functionalized TMDs have shown to curb capacity degradation in TMD and improve long term cycling as Li-ion battery (LIBs) electrodes. Herein, we report synthesis of such a composite in which MoSe2 nanosheets are in SiOC matrix in a self-standing fiber mat configuration. This was achieved via electrospinning of TMD nanosheets suspended in pre-ceramic polymer followed by high temperature pyrolysis. Morphology and chemical composition of synthesized material was established by use of electron microscopy and spectroscopic technique. When tested as LIB electrode, the SiOC/MoSe2 fiber mats showed improved cycling stability over neat MoSe2 and neat SiOC electrodes. The freestanding composite electrode delivered a high charge capacity of 586 mAh g−1electrode with an initial coulombic efficiency of 58%. The composite electrode also showed good cycling stability over SiOC fiber mat electrode for over 100 cycles. 
    more » « less
  2. Abstract Uncontrollable dendrite growth is closely related to non‐uniform reaction environments. However, there is a lack of understanding and analysis methods to probe the localized electrochemical environment (LEE). Here the effects of the LEE are investigated, including localized ion concentrations, current density, and electric potential, on metal plating/stripping dynamics and dendrite minimization. A novel in situ 3D microscopy technique is developed to image the morphology dynamics and deposition rate of Zn plating/stripping processes on 3D Zn–Mn anodes. Using the in situ 3D microscope, the electrode morphology changes during the reactions are directly imaged and Zn deposition rate maps at different time points are obtained. It is found that reaction kinetics are highly correlated to LEE and electrode morphology. To further quantify the LEE effects, the digital twin technique is employed that allows the accurate calculation of the electrochemical environments, such as localized ion concentrations, current density, and electric potential, which cannot be directly measured from experiments. It is found that the curvature of the 3D electrode surface determines the LEE and significantly influences reaction kinetics. This provides a new strategy to minimize the dendrite formation by designing and optimizing the 3D geometry of the electrode to control the LEE. 
    more » « less
  3. The desire to translate biosensors for real time molecular monitoring has intensified due to the commercial success of 2-week continuous glucose monitors. However, a common limitation for emerging biosensors is that their lifetimes are often too short for commercially expected benchmarks of at least 3-day and ideally 2-week operation. Electrochemical sensors remain the preferred format of biochemical sensing thanks to their low cost, size, weight, and power requirements for mobile deployment. When exposed to biological fluid, all electrochemical sensors require a blocking layer to protect the electrode surface from fouling and redox interferents. Traditional blocking layer approaches rely on self-assembled monolayers which are often fragile to biological interferents like proteins and require specific electrode materials to improve their stability. Presented here is an evaluation of ultra-thin inorganic oxide and nitride films as an alternative to self-assembled monolayer blocking layers. Specifically, silicon oxide, silicon nitride, and aluminum oxide films were deposited by electron beam evaporation or atomic layer deposition at thicknesses of several nanometers to mimic the electrical capacitance of a conventional monolayer blocking layer. These oxide films were characterized over 7-days and demonstrated to provide poor protection against interfering redox currents from dissolved ferricyanide (150 - 300 µA/cm2) and oxygen reduction interference (30 - 60 µA/cm2). The oxide films were then used as a blocking layer in an electrochemical aptamer sensor using the previously published aptamer for phenylalanine. The phenylalanine sensor showed a binding affinity stronger than found in literature, but a reduced signal gain (∼ 20 % change in methylene blue redox current compared to the expected 50 % previously published on gold). It is speculated and supported by literature that these oxide and nitride films gradually dissolve over periods of days in an aqueous environment. Results further show that if lower quality oxide or nitride films are used, they may be more stable, but at the cost of initially higher in currents. While oxide and nitride films fail to improve upon the performance of thiol-blocking layers on gold electrodes, they may provide utility in some applications by allowing for alternate electrode materials and surfaces to be used instead of traditional self-assembled monolayers on gold electrodes. 
    more » « less
  4. Transition metal dichalcogenides (TMDs) such as the WS2 have been widely studied as potential electrode materials for lithium-ion batteries (LIB) owing to TMDs’ layered morphology and reversible conversion reaction with the alkali metals between 0 to 2 V (v/s Li/Li+) potentials. However, works involving TMD materials as electrodes for sodium- (NIBs) and potassium-ion batteries (KIBs) are relatively few, mainly due to poor electrode performance arising from significant volume changes and pulverization by the larger size alkali-metal ions. Here, we show that Na+ and K+ cyclability in WS2 TMD is improved by introducing WS2 nanosheets in a chemically and mechanically robust matrix comprising precursor-derived ceramic (PDC) silicon oxycarbide (SiOC) material. The WS2/SiOC composite in fibermat morphology was achieved via electrospinning followed by thermolysis of a polymer solution consisting of a polysiloxane (precursor to SiOC) dispersed with exfoliated WS2 nanosheets. The composite electrode was successfully tested in Na-ion and K-ion half-cells as a working electrode, which rendered the first cycle charge capacity of 474.88 mAh g−1 and 218.91 mAh g−1, respectively. The synergistic effect of the composite electrode leads to higher capacity and improved coulombic efficiency compared to the neat WS2 and neat SiOC materials in these cells. 
    more » « less
  5. Janorkar, Amol V; Vozzi, Giovanni (Ed.)
    The patient-specific treatment of bone fractures using porous osteoconductive scaffolds has faced significant clinical challenges due to insufficient mechanical strength and bioactivity. These properties are essential for osteogenesis, bone bridging, and bone regeneration. Therefore, it is crucial to develop and characterize biocompatible, biodegradable, and mechanically robust scaffolds for effective bone regeneration. The objective of this study is to systematically investigate the mechanical performance of SimuBone, a medical-grade biocompatible and biodegradable material, using 10 distinct triply periodic minimal surface (TPMS) designs with various internal structures. To assess the material’s tensile properties, tensile structures based on ASTM D638-14 (Design IV) were fabricated, while standard torsion structures were designed and fabricated to evaluate torsional properties. Additionally, this work examined the compressive properties of the 10 TPMS scaffold designs, parametrically designed in the Rhinoceros 3D environment and subsequently fabricated using fused deposition modeling (FDM) additive manufacturing. The FDM fabrication process utilized a microcapillary nozzle (heated to 240 °C) with a diameter of 400 µm and a print speed of 10 mm/s, depositing material on a heated surface maintained at 60 °C. It was observed that SimuBone had a shear modulus of 714.79 ± 11.97 MPa as well as an average yield strength of 44 ± 1.31 MPa. Scaffolds fabricated with horizontal material deposition exhibited the highest tensile modulus (5404.20 ± 192.30 MPa), making them ideal for load-bearing applications. Also, scaffolds with large voids required thicker walls to prevent collapse. The P.W. Hybrid scaffold design demonstrated high vertical stiffness but moderate horizontal stiffness, indicating anisotropic mechanical behavior. The Neovius scaffold design balanced mechanical stiffness and porosity, making it a promising candidate for bone tissue engineering. Overall, the outcomes of this study pave the way for the design and fabrication of scaffolds with optimal properties for the treatment of bone fractures. 
    more » « less