Abstract Sea-ice pore microstructure constrains ice transport properties, affecting fluid flow relevant to oil-in-ice transport and biogeochemical processes. Motivated by a lack of pore microstructural data, in particular for granular ice and across the seasonal cycle, throat size, tortuosity, connectivity, and other microstructural variables were derived from X-ray computed tomography for brine-filled pores in seasonal landfast ice off northern Alaska. Data were obtained for granular and columnar ice during the ice growth, transition, and melt season. While granular ice exhibits a more heterogeneous pore space than columnar ice, pore and throat size distributions are comparable. The greater tortuosity of pores in granular (1.2 < τ g < 1.7) compared to columnar ice (1.0 < τ c < 1.1) compounded with a less interconnected pore space translates into lower permeability for granular ice during the growth season for a given porosity. The microstructural data explain findings of granular ice hindering vertical oil-in-ice transport during ice growth and transition stage. With granular ice more frequent in the changing Arctic, data from studies such as this are needed to inform improved modeling of porosity-permeability relationships.
more »
« less
Triple click chemistry for crosslinking, stiffening, and annealing of gelatin-based microgels
This work presents a new granular hydrogel preparation workflow using gelatin-norbornene-carbohydrazide, a macromer amenable to three orthogonal click chemistries for microgel crosslinking, stiffening, and annealing into granular hydrogels
more »
« less
- Award ID(s):
- 1950672
- PAR ID:
- 10654618
- Publisher / Repository:
- RSC Applied Polymers
- Date Published:
- Journal Name:
- RSC Applied Polymers
- Volume:
- 2
- Issue:
- 4
- ISSN:
- 2755-371X
- Page Range / eLocation ID:
- 656 to 669
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Much of the Earth and many surfaces of extraterrestrial bodies are composed of non-cohesive particulate matter. Locomoting on such granular terrain is challenging for common robotic devices, either wheeled or legged. In this work, we discover a robust alternative locomotion mechanism on granular media-generating movement via self-vibration. To demonstrate the effectiveness of this locomotion mechanism, we develop a cube-shaped robot with an embedded vibratory motor and conduct systematic experiments on granular terrains of various particle properties and slopes. We investigate how locomotion changes as a function of vibration frequency/intensity on such granular terrains. Compared to hard surfaces, we find such a vibratory locomotion mechanism enables the robot to move faster, and more stably on granular surfaces, facilitated by the interaction between the body and surrounding grains. We develop a numerical simulation of a vibrating single cube on granular media, enabling us to justify our hypothesis that the cube achieves locomotion through the oscillations excited at a distance from the cube’s center of mass. The simplicity in structural design and controls of this robotic system indicates that vibratory locomotion can be a valuable alternative way to produce robust locomotion on granular terrains. We further demonstrate that such cube-shaped robots can be used as modular units for vibratory robots with capabilities of maneuverable forward and turning motions, showing potential practical scenarios for robotic systems.more » « less
-
Randomly distributed granular materials offer a rich landscape of mechanisms but their tunability is limited. Taking inspiration from crystallography and granular mechanics, we fabricated and tested fully dense cohesive FCC and HCP granular crystals, and developed granular crystal plasticity models to investigate their relative strength and deformation mechanisms. Geometrically, switching from FCC to HCP is remarkably simple and only involves a 60° rotation about the midplane of individual dodecahedral grains. However, the effect of this transformation on crystallography, properties and mechanics are profound. This rotation breaks several symmetries, and while additional slip systems are made available (prismatic, pyramidal.) compared to the {111} family in FCC, each of the families in HCP contain a smaller number of total slip planes. As a result, slip in HCP is in general more difficult to activate resulting in an average strength 50% greater than in FCC. We also observed mechanisms that are unique to granular crystals: micro-buckling in FCC and HCP, and splaying in HCP crystals loaded along the c-axis. These granular crystals offer powerful and versatile platforms for new generation mechanical metamaterials with tunable inelastic deformation, energy absorption and strength. For example, the granular architecture amplifies the properties of the adhesive by about one order of magnitude, so that attractive rheologies maybe be translated into useful responses in compression.more » « less
-
We propose a class of diatomic 2-D soft granular crystals, which features pattern transformation under compression with lateral confinement. The proposed granular crystals are composed of two different types of cylinders: large soft cylinders and small hard cylinders. The pattern-transformable granular crystals are obtained by exploring perturbed packing patterns as potential configurations, and compression with lateral confinement as the driving force of the transition. As a demonstration of the proof-of-concept, we first show the results of desktop-scaled experiments and finite element simulations for a representative case. Then, we present the procedure to obtain these new pattern transformations in soft granular crystals based on the compact packing theory of diatomic circles. The scale-independent compact packing theory serves as an important part of the veiled underlying mechanism of the observed pattern transformations, so the proposed granular crystals can open new avenues in the microstructural design of functional materials towards practical applications.more » « less
-
Typical granular materials are far from optimal in terms of mechanical performance: Random packing leads to poor load transfer in the form of thin and dispersed force lines within the material, to inhomogeneous jamming, and to strain localization. In addition, localized contacts between individual grains result in low stiffness, strength and brittleness. Here we propose a granular material that simultaneously embodies three approaches to increase strength: geometrical design of individual grains, crystallization, and infiltration by an adhesive. Using mechanical vibrations, we assembled millimeter-scale 3D printed grains with rhombic dodecahedral shapes into fully dense FCC granular crystals. We then infiltrated the granular structure with a tacky, polyacrylic adhesive that is orders of magnitude weaker than the grains, but which provides sustained adhesion over large interfacial displacements. The resulting material is a fully dense, free-standing space filling granular crystal. Compressive tests show that these granular crystals are up to 60 times stronger than randomly packed cohesive spheres and they display a rich set of mechanisms: Nonlinear deformations, crystal plasticity reminiscent of atomistic mechanisms, cross-slip, shear-induced dilatancy, micro-buckling, and tensile strength. To capture some of these mechanisms we developed a multiscale model that incorporates local cohesion between grains, resolved shear and normal stresses on available slip planes, and prediction of compressive strength as function of loading orientation. The predicted strength is highly anisotropic and agrees well with the compression experiments. Once fully understood and harnessed, we envision that these mechanisms will lead to granular engineering materials with unusual combinations of mechanical performances attractive for many applications.more » « less
An official website of the United States government

