skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 31, 2026

Title: Microlensing Constraints on the Stellar and Planetary Mass Functions
Abstract The mass function (MF) of isolated objects measured by microlensing consists of both a stellar and a planetary component. We compare the microlensing MFs of A. Gould et al. and T. Sumi et al. to other measurements of the MF. The abundance of brown dwarfs from the tail of the T. Sumi et al. stellar MF is consistent with measurements from the local solar neighborhood. Microlensing free-floating planets (μFFPs) may be free-floating or orbit host stars with semimajor axesa ≳  10 au and therefore can constrain the populations of both free-floating and wide-orbit planets. Comparisons to radial velocity and direct imaging low-mass companion populations suggest that either most of theμFFP population with masses  > 1MJupis bound to hosts more massive than M dwarfs, or some fraction of the observed companion population 1MJup < mp <  0.08Mactually comes from the low-mass tail of the stellar MF. TheμFFP population also places strong constraints on planets inferred from debris disks and gaps in protoplanetary disks observed by the Atacama Large Millimeter/submillimeter Array.  more » « less
Award ID(s):
2108414
PAR ID:
10654664
Author(s) / Creator(s):
;
Publisher / Repository:
AAS Journals
Date Published:
Journal Name:
The Astronomical Journal
Volume:
170
Issue:
2
ISSN:
0004-6256
Page Range / eLocation ID:
132
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We measure the Einstein radius of the single-lens microlensing event KMT-2022-BLG-2397 to beθE= 24.8 ± 3.6μas, placing it at the upper shore of the Einstein Desert, 9 ≲θE/μas ≲ 25, between free-floating planets (FFPs) and bulge brown dwarfs (BDs). In contrast to the six BD (25 ≲θE≲ 50) events presented by Gould et al. (2022), which all had giant-star source stars, KMT-2022-BLG-2397 has a dwarf-star source, with angular radiusθast∼ 0.9μas. This prompts us to study the relative utility of dwarf and giant sources for characterizing FFPs and BDs from finite-source point-lens (FSPL) microlensing events. We find “dwarfs” (including main-sequence stars and subgiants) are likely to yield twice as manyθEmeasurements for BDs and a comparable (but more difficult to quantify) improvement for FFPs. We show that neither current nor planned experiments will yield complete mass measurements of isolated bulge BDs, nor will any other planned experiment yield as manyθEmeasurements for these objects as the Korea Microlensing Telescope (KMT). Thus, the currently anticipated 10 yr KMT survey will remain the best way to study bulge BDs for several decades to come. 
    more » « less
  2. Abstract To exhume the buried signatures of free-floating planets (FFPs) with small angular Einstein radiusθE, we build a new full-frame difference image pipeline for the Korean Microlensing Telescope Network (KMTNet) survey based on the newly optimized pySIS package. We introduce the detailed processes of the new pipeline, including frame registration, difference image analysis, and light curve extraction. To test this pipeline, we extract one-year light curves for 483,068 stars withI ≲ 17 and conduct a model-independent search for microlensing events. The search finds 36 microlensing events, including five new events and six events discovered by other collaborations but missed by previous KMTNet searches. We find that the light curves from the new pipeline are precise enough to be sensitive to FFPs withθE ∼ 1μas. Using the new pipeline, a complete FFP search on the eight-year KMTNet images can be finished within six months and then yield the FFP mass function. The new pipeline can be used for a new KMTNet AlertFinder system, with significantly reduced false positives. 
    more » « less
  3. Abstract The Milky Way is believed to host hundreds of millions of quiescent stellar-mass black holes (BHs). In the last decade, some of these objects have been potentially uncovered via gravitational microlensing events. All these detections resulted in a degeneracy between the velocity and the mass of the lens. This degeneracy has been lifted, for the first time, with the recent astrometric microlensing detection of OB110462. However, two independent studies reported very different lens masses for this event. Sahu et al. inferred a lens mass of 7.1 ± 1.3M, consistent with a BH, while Lam et al. inferred 1.6–4.2M, consistent with either a neutron star or a BH. Here, we study the landscape of isolated BHs formed in the field. In particular, we focus on the mass and center-of-mass speed of four subpopulations: isolated BHs from single-star origin, disrupted BHs of binary-star origin, main-sequence stars with a compact object companion, and double compact object mergers. Our model predicts that most (≳70%) isolated BHs in the Milky Way are of binary origin. However, noninteractions lead to most massive BHs (≳15–20M) being predominantly of single origin. Under the assumption that OB110462 is a free-floating compact object, we conclude that it is more likely to be a BH originally belonging to a binary system. Our results suggest that low-mass BH microlensing events can be useful to understand binary evolution of massive stars in the Milky Way, while high-mass BH lenses can be useful to probe single stellar evolution. 
    more » « less
  4. Abstract We report a free-floating planet (FFP) candidate identified from the analysis of the microlensing event KMT-2023-BLG-2669. The lensing light curve is characterized by a short duration (≲3 days) and a small amplitude (≲0.7 mag). From the analysis, we find an Einstein timescale oftE⋍ 0.33 days and an Einstein radius ofθE⋍ 4.41μas. These measurements enable us to infer the lens mass as M = 8 M π rel / 0.1 mas 1 , whereπrelis the relative lens–source parallax. The inference implies that the lens is a sub-Neptune- to Saturn-mass object, depending on its unknown distance. This is the ninth isolated planetary mass microlens withθE< 10μas, which is a useful threshold for an FFP candidate. We conduct extensive searches for possible signals of a host star in the light curve, but find no strong evidence for the host. We investigate the possibility of using late-time high-resolution imaging to probe for possible hosts. In particular, we discuss the case of finite-source point-lens FFP candidates, for which it would be possible to search for very-wide-separation hosts immediately, although such searches are “high risk, high reward.” 
    more » « less
  5. Abstract We present the analysis of three more planets from the KMTNet 2021 microlensing season. KMT-2021-BLG-0119Lb is a ∼6MJupplanet orbiting an early M dwarf or a K dwarf, KMT-2021-BLG-0192Lb is a ∼2MNepplanet orbiting an M dwarf, and KMT-2021-BLG-2294Lb is a ∼1.25MNepplanet orbiting a very-low-mass M dwarf or a brown dwarf. These by-eye planet detections provide an important comparison sample to the sample selected with the AnomalyFinder algorithm, and in particular, KMT-2021-BLG-2294 is a case of a planet detected by eye but not by algorithm. KMT-2021-BLG-2294Lb is part of a population of microlensing planets around very-low-mass host stars that spans the full range of planet masses, in contrast to the planet population at ≲0.1 au, which shows a strong preference for small planets. 
    more » « less