The random order graph streaming model has received significant attention recently, with problems such as matching size estimation, component counting, and the evaluation of bounded degree constant query testable properties shown to admit surprisingly space efficient algorithms. The main result of this paper is a space efficient single pass random order streaming algorithm for simulating nearly independent random walks that start at uniformly random vertices. We show that the distribution of k-step walks from b vertices chosen uniformly at random can be approximated up to error ∊ per walk using  words of space with a single pass over a randomly ordered stream of edges, solving an open problem of Peng and Sohler [SODA '18]. Applications of our result include the estimation of the average return probability of the k-step walk (the trace of the kth power of the random walk matrix) as well as the estimation of PageRank. We complement our algorithm with a strong impossibility result for directed graphs.
more »
« less
This content will become publicly available on April 18, 2026
Random Graph Matching at Otter’s Threshold via Counting Chandeliers
Network alignment or graph matching—figuring out how vertices across different networks correspond to each other—is a key challenge in many fields, from protecting online privacy to mapping biological data, improving computer vision, and even understanding languages. However, this problem falls into the class of notoriously difficult quadratic assignment problems, which are NP-hard to solve or approximate. Despite these challenges, researchers Mao, Wu, Xu, and Yu have made a major breakthrough. In their paper, “Random Graph Matching at Otter’s Threshold via Counting Chandeliers,” they introduce an innovative algorithm that can successfully match two random networks whenever the square of their edge correlation exceeds Otter’s constant (≈0.338). Their key innovation lies in counting chandeliers—specially designed tree-like structures—to identify corresponding vertices across the networks. The algorithm correctly matches nearly all vertices with high probability and even achieves perfect matching whenever the data allows. This is the first-ever polynomial-time algorithm capable of achieving perfect and near-perfect matching with an explicit constant correlation for both dense and sparse networks, bridging a long-standing gap between statistical limits and algorithmic performance.
more »
« less
- PAR ID:
- 10654810
- Publisher / Repository:
- INFORMS
- Date Published:
- Journal Name:
- Operations Research
- ISSN:
- 0030-364X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Belkin, Mikhail; Kpotufe, Samory (Ed.)Graph matching, also known as network alignment, refers to finding a bijection between the vertex sets of two given graphs so as to maximally align their edges. This fundamental computational problem arises frequently in multiple fields such as computer vision and biology. Recently, there has been a plethora of work studying efficient algorithms for graph matching under probabilistic models. In this work, we propose a new algorithm for graph matching: Our algorithm associates each vertex with a signature vector using a multistage procedure and then matches a pair of vertices from the two graphs if their signature vectors are close to each other. We show that, for two Erdős–Rényi graphs with edge correlation $$1-\alpha$$, our algorithm recovers the underlying matching exactly with high probability when $$\alpha \le 1 / (\log \log n)^C$$, where $$n$$ is the number of vertices in each graph and $$C$$ denotes a positive universal constant. This improves the condition $$\alpha \le 1 / (\log n)^C$$ achieved in previous work.more » « less
-
Belkin, Mikhail; Samory Kpotufe (Ed.)Graph matching, also known as network alignment, refers to finding a bijection between the vertex sets of two given graphs so as to maximally align their edges. This fundamental computational problem arises frequently in multiple fields such as computer vision and biology. Recently, there has been a plethora of work studying efficient algorithms for graph matching under probabilistic models. In this work, we propose a new algorithm for graph matching: Our algorithm associates each vertex with a signature vector using a multistage procedure and then matches a pair of vertices from the two graphs if their signature vectors are close to each other. We show that, for two Erdős–Rényi graphs with edge correlation 1−α, our algorithm recovers the underlying matching exactly with high probability when α≤1/(loglogn)C, where n is the number of vertices in each graph and C denotes a positive universal constant. This improves the condition α≤1/(logn)C achieved in previous work.more » « less
-
We give a combinatorial polynomial-time algorithm to find a maximum weight independent set in perfect graphs of bounded degree that do not contain a prism or a hole of length four as an induced subgraph. An even pair in a graph is a pair of vertices all induced paths between which are even. An even set is a set of vertices every two of which are an even pair. We show that every perfect graph that does not contain a prism or a hole of length four as an induced subgraph has a balanced separator which is the union of a bounded number of even sets, where the bound depends only on the maximum degree of the graph. This allows us to solve the maximum weight independent set problem using the well-known submodular function minimization algorithm. Funding: This work was supported by the Engineering and Physical Sciences Research Council [Grant EP/V002813/1]; the National Science Foundation [Grants DMS-1763817, DMS-2120644, and DMS-2303251]; and Alexander von Humboldt-Stiftung.more » « less
-
Gørtz, Inge Li; Farach-Colton, Martin; Puglisi, Simon J; Herman, Grzegorz (Ed.)We present the first polynomial-time algorithm to exactly compute the number of labeled chordal graphs on n vertices. Our algorithm solves a more general problem: given n and ω as input, it computes the number of ω-colorable labeled chordal graphs on n vertices, using O(n⁷) arithmetic operations. A standard sampling-to-counting reduction then yields a polynomial-time exact sampler that generates an ω-colorable labeled chordal graph on n vertices uniformly at random. Our counting algorithm improves upon the previous best result by Wormald (1985), which computes the number of labeled chordal graphs on n vertices in time exponential in n. An implementation of the polynomial-time counting algorithm gives the number of labeled chordal graphs on up to 30 vertices in less than three minutes on a standard desktop computer. Previously, the number of labeled chordal graphs was only known for graphs on up to 15 vertices.more » « less
An official website of the United States government
