skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 14, 2026

Title: Forbs in Viking lands: the effect of disturbing dominant graminoids on recruitment in tundra grasslands
Grasslands, by definition, are dominated by graminoids. Nevertheless, forbs also make up a substantial part of vascular plant diversity in grasslands and are important resources of mammalian herbivores. However, forb recruitment is constrained by successful dominant graminoids, limiting access to safe sites for germination. Disturbances created by herbivores can reduce graminoid dominance and favor forb recruitment. Here we hypothesize that intense disturbance, such as that caused by megaherbivores, promotes safe sites for forbs in such graminoid‐dominated grasslands, whereas disturbance by today's herbivores, such as small rodents, may not be sufficiently intense. We selected a total of 80 plots with either of four successful graminoid species in tundra grasslands of the Varanger Peninsula, Norway. The graminoid species were silicon‐poor or rich, and of either mat‐ or bunch‐growth form. Plots were further selected in both rodent disturbed and undisturbed areas. We manually removed the dominant graminoid in half of the plots, mimicking megaherbivore disturbance by reducing both shading capabilities and belowground rhizome and root systems. Results show that forb recruitment was significantly enhanced one year following the manual removal of all four graminoids. This effect on forb recruitment was similar among the four graminoids even though they were associated with distinct plant communities. The rodent disturbance did not enhance forb recruitment. In plots with rodent‐disturbed graminoids, the manual removal enhanced forb recruitment only in plots with silicon‐rich graminoids. Forb recruitment was further enhanced by higher levels of initial species richness, initial forb abundance, and soil moisture. Our findings support the hypothesis that intense disturbance, simulating megaherbivore effects on dominant graminoids, significantly enhances forb recruitment.  more » « less
Award ID(s):
2126796
PAR ID:
10654855
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Oikos
Date Published:
Journal Name:
Oikos
ISSN:
0030-1299
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Arctic rodents influence tundra plant communities by altering species diversity, structure, and nutrient dynamics. These dynamics are intensified during rodent population peaks. Plants are known to induce defenses in response to rodent herbivory. However, changes in plant tissue digestibility may also play a role in deterring rodents or impacting their survival. This study presents a first look at the impacts of rodent herbivory on crude protein (CP) and acid detergent fiber (ADF) of two of the most common graminoid species (Carex nigraandDeschampsia cespitosa) and graminoid genus (Calamagrostisspp.) in the tundra meadows of the Varanger Peninsula, Norway. We selected 32 experimental plots representing both rodent-disturbed and adjacent, undisturbed control graminoid patches. In the summer of a rodent population peak, the disturbed plots had higher ADF (28.5%) values than less disturbed ones (26.6%), controlling for plant species. We also found differences between species, withCarex nigrahaving the lowest fiber content (24.3%, ADF) and highest protein content (18.2% CP)—making it the most palatable species. These results show that rodent activity can potentially alter plant food quality, suggesting that increasing fiber content may be a defensive response to herbivory. 
    more » « less
  2. Abstract Arctic rodents influence tundra plant communities by altering species diversity, structure, and nutrient dynamics. These dynamics are intensified during rodent population peaks. Plants are known to induce defenses in response to rodent herbivory. However, changes in plant tissue digestibility may also play a role in deterring rodents or impacting their survival. This study presents a first look at the impacts of rodent herbivory on crude protein (CP) and acid detergent fiber (ADF) of three of the most common graminoid species (Calamagrostis sp.,Carex nigraandDeschampsia cespitosa) in the tundra meadows of the Varanger Peninsula, Norway. We selected 32 experimental plots representing both rodent-disturbed and adjacent, undisturbed control graminoid patches. During a rodent population peak, the disturbed plots had higher ADF (28.5%) values than less disturbed ones (26.6%), controlling for plant species. We also found differences between species, withCarex nigrahaving the lowest fiber content (24.3%, ADF) and highest protein content (18.2% CP) – making it the most palatable species. These results show that rodent activity can potentially alter plant food quality, suggesting that increased fiber content may be a defensive adaptation against herbivory. 
    more » « less
  3. Abstract Plant elemental content can vary up to 1,000‐fold across grasslands, with implications for the herbivores the plants feed. We contrast the regulation, in grasses and forbs, of 12 elements essential to plants and animals (henceforth plant‐essential), 7 essential to animals but not plants (animal‐essential) and 6 with no known metabolic function (nonessential). Four hypotheses accounted for up to two thirds of the variation in grass and forb ionomes across 54 North American grasslands. Consistent with the supply‐side hypothesis, the plant‐essential ionome of both forbs and grasses tracked soil availability. Grass ionomes were more likely to harvest even nonessential elements like Cd and Sr. Consistent with the grazing hypothesis, cattle‐grazed grasslands also accumulated a handful of metals like Cu and Cr. Consistent with the NP‐catalysis hypothesis, increases in the macronutrients N and P in grasses were associated with higher densities of cofactors like Zn and Cu. The plant‐essential elements of forbs, in contrast, consistently varied as per the nutrient‐dilution hypothesis—there was a decrease in elemental parts per million with increasing local carbohydrate production. Combined, these data fit a working hypothesis that grasses maintain lower elemental densities and survive on nutrient‐poor patches by opportunistically harvesting soil nutrients. In contrast, nutrient‐rich forbs use episodes of high precipitation and temperature to build new carbohydrate biomass, raising leaves higher to compete for light, but diluting the nutrient content in every bite of tissue. Herbivores of forbs may thus be particularly prone to increases inpCO2via nutrient dilution. 
    more » « less
  4. The Arctic is experiencing rapid climate change. This research documents changes to tundra vegetation near Atqasuk and Utqiaġvik, Alaska. At each location, 30 plots were sampled annually from 2010 to 2019 using a point frame. For every encounter, we recorded the height and classified it into eight groupings (deciduous shrubs, evergreen shrubs, forbs, graminoids, bryophytes, lichens, litter, and standing dead vegetation); for vascular plants we also identified the species. We found an increase in plant stature and cover over time, consistent with regional warming. Graminoid cover and height increased at both sites, with a 5-fold increase in cover in Atqasuk. At Atqasuk, the cover and height of shrubs and forbs increased. Species diversity decreased at both the sites. Year was generally the strongest predictor of vegetation change, suggesting a cumulative change over time; however, soil moisture and soil temperature were also predictors of vegetation change. We anticipate that plants in the region will continue to grow taller as the region warms, resulting in greater plant cover, especially of graminoids and shrubs. The increase in plant cover and accumulation of litter may negatively impact non-vascular plants. Continued changes in community structure will impact energy balance and carbon cycling and may have regional and global consequences. 
    more » « less
  5. Abstract Human impacts have led to dramatic biodiversity change which can be highly scale‐dependent across space and time. A primary means to manage these changes is via passive (here, the removal of disturbance) or active (management interventions) ecological restoration. The recovery of biodiversity, following the removal of disturbance, is often incomplete relative to some kind of reference target. The magnitude of recovery of ecological systems following disturbance depends on the landscape matrix and many contingent factors. Inferences about recovery after disturbance and biodiversity change depend on the temporal and spatial scales at which biodiversity is measured.We measured the recovery of biodiversity and species composition over 33 years in 17 temperate grasslands abandoned after agriculture at different points in time, collectively forming a chronosequence since abandonment from 1 to 80 years. We compare these abandoned sites with known agricultural land‐use histories to never‐disturbed sites as relative benchmarks. We specifically measured aspects of diversity at the local plot‐scale (α‐scale, 0.5 m2) and site‐scale (γ‐scale, 10 m2), as well as the within‐site heterogeneity (β‐diversity) and among‐site variation in species composition (turnover and nestedness).At our α‐scale, sites recovering after agricultural abandonment only had 70% of the plant species richness (and ~30% of the evenness), compared to never‐ploughed sites. Within‐site β‐diversity recovered following agricultural abandonment to around 90% after 80 years. This effect, however, was not enough to lead to recovery at our γ‐scale. Richness in recovering sites was ~65% of that in remnant never‐ploughed sites. The presence of species characteristic of the never‐disturbed sites increased in the recovering sites through time. Forb and legume cover declines in years since abandonment, relative to graminoid cover across sites.Synthesis.We found that, during the 80 years after agricultural abandonment, old fields did not recover to the level of biodiversity in remnant never‐ploughed sites at any scale. β‐diversity recovered more than α‐scale or γ‐scale. Plant species composition recovered, but not completely, over time, and some species groups increased their cover more than others. Patterns of ecological recovery in degraded ecosystems across space and long time‐scales can inform targeted active restoration interventions and perhaps, lead to better outcomes. 
    more » « less