In this paper, we investigate whether symbolic semantic representations, extracted from deep semantic parsers, can help to reason over the states of involved entities in a procedural text. We consider a deep semantic parser (TRIPS) and semantic role labeling as two sources of semantic parsing knowledge. First, we propose PROPOLIS, a symbolic parsing-based procedural reasoning framework. Second, we integrate semantic parsing information into state-of-the-art neural models for procedural reasoning. Our experiments indicate that explicitly incorporating such semantic knowledge improves procedural understanding. This paper presents new metrics for evaluating procedural reasoning tasks that clarify the challenges and identify differences among neural, symbolic, and integrated models.
more »
« less
This content will become publicly available on December 11, 2026
SemTexIB: Semantic Text Communication with Information Bottleneck: Integrating Rate and Semantic Similarity into Training Objectives
Recent major developments in semantic communi- cation systems stem from integration of deep learning (DL) tech- niques. Following the discovery of capacity achieving codes, the primary motivation for adopting the semantic approach, which retrieves meaning without requiring an exact reconstruction, is its potential to further conserve resources such as bandwidth and power. In this paper, we propose a novel semantic communica- tion framework for textual data over additive white Gaussian noise (AWGN) channels via DL. Our framework leverages the information bottleneck (IB) principle to balance minimizing bit transmission under wireless channel rate constraints with maximizing semantic information retention. Unlike previous works, we integrate the bilingual evaluation understudy (BLEU) sentence similarity score into the training objective to enhance model performance. In particular, inspired by knowledge distil- lation, we utilize large language models (LLMs) during training to transfer their knowledge of text semantics into our model. Using IB principle, we train a neural semantic encoder at the transmitter and a neural semantic decoder at the receiver that incorporates into its objective function the rate constraint together with the BLEU score and the knowledge encoded in the soft probabilities produced by the LLM. Through extensive experiments, our proposed framework demonstrates a notable improvement of up to 45% in text semantic similarity compared to state-of-the-art benchmarks operating at the same channel capacity, significantly outperforming traditional communication systems. Moreover, it exhibits robustness to variations in signal- to-noise ratio (SNR) and achieves significant gains across both low and medium SNR regimes.
more »
« less
- Award ID(s):
- 2003002
- PAR ID:
- 10654886
- Publisher / Repository:
- IEEE Globecom
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A true interpreting agent not only understands sign language and translates to text, but also understands text and translates to signs. Much of the AI work in sign language translation to date has focused mainly on translating from signs to text. Towards the latter goal, we propose a text-to-sign translation model, SignNet, which exploits the notion of similarity (and dissimilarity) of visual signs in translating. This module presented is only one part of a dual-learning two task process involving text-to-sign (T2S) as well as sign-to-text (S2T). We currently implement SignNet as a single channel architecture so that the output of the T2S task can be fed into S2T in a continuous dual learning framework. By single channel, we refer to a single modality, the body pose joints. In this work, we present SignNet, a T2S task using a novel metric embedding learning process, to preserve the distances between sign embeddings relative to their dissimilarity. We also describe how to choose positive and negative examples of signs for similarity testing. From our analysis, we observe that metric embedding learning-based model perform significantly better than the other models with traditional losses, when evaluated using BLEU scores. In the task of gloss to pose, SignNet performed as well as its state-of-the-art (SoTA) counterparts and outperformed them in the task of text to pose, by showing noteworthy enhancements in BLEU 1 - BLEU 4 scores (BLEU 1: 31 → 39; ≈26% improvement and BLEU 4: 10.43 →11.84; ≈14% improvement) when tested on the popular RWTH PHOENIX-Weather-2014T benchmark datasetmore » « less
-
Language understanding involves processing text with both the grammatical and 2 common-sense contexts of the text fragments. The text “I went to the grocery store 3 and brought home a car” requires both the grammatical context (syntactic) and 4 common-sense context (semantic) to capture the oddity in the sentence. Contex5 tualized text representations learned by Language Models (LMs) are expected to 6 capture a variety of syntactic and semantic contexts from large amounts of training 7 data corpora. Recent work such as ERNIE has shown that infusing the knowl8 edge contexts, where they are available in LMs, results in significant performance 9 gains on General Language Understanding (GLUE) benchmark tasks. However, 10 to our knowledge, no knowledge-aware model has attempted to infuse knowledge 11 through top-down semantics-driven syntactic processing (Eg: Common-sense to 12 Grammatical) and directly operated on the attention mechanism that LMs leverage 13 to learn the data context. We propose a learning framework Top-Down Language 14 Representation (TDLR) to infuse common-sense semantics into LMs. In our 15 implementation, we build on BERT for its rich syntactic knowledge and use the 16 knowledge graphs ConceptNet and WordNet to infuse semantic knowledge.more » « less
-
Semantic typing aims at classifying tokens or spans of interest in a textual context into semantic categories such as relations, entity types, and event types. The inferred labels of semantic categories meaningfully interpret how machines understand components of text. In this paper, we present UniST, a unified framework for semantic typing that captures label semantics by projecting both inputs and labels into a joint semantic embedding space. To formulate different lexical and relational semantic typing tasks as a unified task, we incorporate task descriptions to be jointly encoded with the input, allowing UniST to be adapted to different tasks without introducing task-specific model components. UniST optimizes a margin ranking loss such that the semantic relatedness of the input and labels is reflected from their embedding similarity. Our experiments demonstrate that UniST achieves strong performance across three semantic typing tasks: entity typing, relation classification and event typing. Meanwhile, UniST effectively transfers semantic knowledge of labels and substantially improves generalizability on inferring rarely seen and unseen types. In addition, multiple semantic typing tasks can be jointly trained within the unified framework, leading to a single compact multi-tasking model that performs comparably to dedicated single-task models, while offering even better transferability.more » « less
-
Semantic oppositeness is the natural counterpart of the much popular natural language processing concept, semantic similarity. Much like how semantic similarity is a measure of the degree to which two concepts are similar, semantic oppositeness yields the degree to which two concepts would oppose each other. This complementary nature has resulted in most applications and studies incorrectly assuming semantic oppositeness to be the inverse of semantic similarity. In other trivializations, “semantic oppositeness” is used interchangeably with “antonymy”, which is as inaccurate as replacing semantic similarity with simple synonymy. These erroneous assumptions and over-simplifications exist due, mainly, to either lack of information, or the computational complexity of calculation of semantic oppositeness. The objective of this research is to prove that it is possible to extend the idea of word vector embedding to incorporate semantic oppositeness, so that an effective mapping of semantic oppositeness can be obtained in a given vector space. In the experiments we present in this paper, we show that our proposed method achieves a training accuracy of 97.91% and a test accuracy of 97.82%, proving the applicability of this method even in potentially highly sensitive applications and dispelling doubts of over-fitting. Further, this work also introduces a novel, unanchored vector embedding method and a novel, inductive transfer learning process.more » « less
An official website of the United States government
