Non-toxic, chemically inert, organic polymers as polyethylene glycol (PEG) and polyoxymethylene (POM) have versatile applications in basic research, industry and pharmacy. In this work, we aim to characterize the hydration structure of PEG and POM oligomers by exploring how the solute disturbs the water structure compared to the bulk solvent and how the solute chain interacts with the solvent. We explore the effect of (i) the C–C–O (PEG) versus C-O (POM) constitution of the chain and (ii) chain length. To this end, MD simulations followed by clustering and topological analysis of the hydration network, as well as quantum mechanical calculations of atomic charges are used. We show that the hydration varies with chain conformation and length. The degree of folding of the chain impacts its degree of solvation, which is measurable by different parameters as for example the number of water molecules in the first solvation shell and the solvent accessible surface. Atomic charges calculated on the oligomers in gas phase are stable throughout conformation and chain length and seem not to determine solvation. Hydration however induces charge transfer from the solute molecule to the solvent, which depends on the degree of hydration.
more »
« less
This content will become publicly available on April 28, 2026
The impact of hydration shell inclusion and chain exclusion in the efficacy of reaction coordinates for homogeneous and heterogeneous ice nucleation
Ice nucleation plays a pivotal role in many natural and industrial processes, and molecular simulations have proven vital in uncovering its kinetics and mechanisms. A fundamental component of such simulations is the choice of an order parameter (OP) that quantifies the progress of nucleation, with the efficacy of an OP typically measured by its ability to predict the committor probabilities. Here, we leverage a machine learning framework introduced in our earlier work [Domingues et al., J. Phys. Chem. Lett. 15, 1279, (2024)] to systematically investigate how key implementation details influence the efficacy of standard Steinhardt OPs in capturing the progress of both homogeneous and heterogeneous ice nucleation. Our analysis identifies distance and q6 cutoffs as the primary determinants of OP performance, regardless of the mode of nucleation. We also examine the impact of two popular refinement strategies, namely chain exclusion and hydration shell inclusion, on OP efficacy. We find neither strategy to exhibit a universally consistent impact. Instead, their efficacy depends strongly on the chosen distance and q6 cutoffs. Chain exclusion enhances OP efficacy when the underlying OP lacks sufficient selectivity, whereas hydration shell inclusion is beneficial for overly selective OPs. Consequently, we demonstrate that selecting optimal combinations of such cutoffs can eliminate the need for these refinement strategies altogether. These findings provide a systematic understanding of how to design and optimize OPs for accurately describing complex nucleation phenomena, offering valuable guidance for improving the predictive power of molecular simulations.
more »
« less
- Award ID(s):
- 2203527
- PAR ID:
- 10654988
- Publisher / Repository:
- AIP Publishing
- Date Published:
- Journal Name:
- The Journal of Chemical Physics
- Volume:
- 162
- Issue:
- 16
- ISSN:
- 0021-9606
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Heterogeneous ice nucleation is ubiquitous but its microscopic mechanisms can be extraordinarily complex even on a simple surface. Such complexity poses a challenge in modeling nucleation using advanced sampling methods. Here, we investigate heterogeneous ice nucleation on an FCC (211) surface by a forward flux sampling (FFS) method to understand how the complexity in nucleation pathways affects the accuracy of FFS. We first show the commonly adopted, size-based order parameter fails to describe heterogeneous ice nucleation on the FCC (211) surface. Inclusion of geometric anisotropy of ice nucleus as an additional descriptor is found to significantly improve the quality of the size-based order parameter for the current system. Subsequent application of this new order parameter in FFS identifies two competing ice nucleation pathways in the system: a primary-prism-planed (PPP) path and a secondary-prism-planed (SPP) path, both leading to the formation of hexagonal ice but with different crystalline orientations. Although the PPP pathway dominates ice nucleation on the FCC (211) surface, the occurrence of the less efficient SPP pathway, particularly its strong presence at the early stage of FFS, is found to yield a significant statistical uncertainty in the calculated FFS rate constant. We develop a two-path model that enables gaining a general, quantitative understanding of the impact of initial finite sampling on the reliability of FFS calculations in the presence of multiple nucleation pathways. Our study also suggests a few general strategies for improving the accuracy of FFS when exploring unknown but complex systems.more » « less
-
null (Ed.)Growth of Legionella pneumophila and other opportunistic pathogens (OPs) in drinking water premise plumbing poses an increasing public health concern. Premise plumbing is constructed of a variety of materials, creating complex environments that vary chemically, microbiologically, spatially, and temporally in a manner likely to influence survival and growth of OPs. Here we systematically review the literature to critically examine the varied effects of common metallic (copper, iron) and plastic (PVC, cross-linked polyethylene (PEX)) pipe materials on factors influencing OP growth in drinking water, including nutrient availability, disinfectant levels, and the composition of the broader microbiome. Plastic pipes can leach organic carbon, but demonstrate a lower disinfectant demand and fewer water chemistry interactions. Iron pipes may provide OPs with nutrients directly or indirectly, exhibiting a high disinfectant demand and potential to form scales with high surface areas suitable for biofilm colonization. While copper pipes are known for their antimicrobial properties, evidence of their efficacy for OP control is inconsistent. Under some circumstances, copper’s interactions with premise plumbing water chemistry and resident microbes can encourage growth of OPs. Plumbing design, configuration, and operation can be manipulated to control such interactions and health outcomes. Influences of pipe materials on OP physiology should also be considered, including the possibility of influencing virulence and antibiotic resistance. In conclusion, all known pipe materials have a potential to either stimulate or inhibit OP growth, depending on the circumstances. This review delineates some of these circumstances and informs future research and guidance towards effective deployment of pipe materials for control of OPs.more » « less
-
null (Ed.)We addressed the frequent occurrence of mixed-chain lipids in biological membranes and their impact on membrane structure by studying several chain-asymmetric phosphatidylcholines and the highly asymmetric milk sphingomyelin. Specifically, we report trans-membrane structures of the corresponding fluid lamellar phases using small-angle X-ray and neutron scattering, which were jointly analyzed in terms of a membrane composition-specific model, including a headgroup hydration shell. Focusing on terminal methyl groups at the bilayer center, we found a linear relation between hydrocarbon chain length mismatch and the methyl-overlap for phosphatidylcholines, and a non-negligible impact of the glycerol backbone-tilting, letting the sn1-chain penetrate deeper into the opposing leaflet by half a CH2 group. That is, penetration-depth differences due to the ester-linked hydrocarbons at the glycerol backbone, previously reported for gel phase structures, also extend to the more relevant physiological fluid phase, but are significantly reduced. Moreover, milk sphingomyelin was found to follow the same linear relationship suggesting a similar tilt of the sphingosine backbone. Complementarily performed molecular dynamics simulations revealed that there is always a part of the lipid tails bending back, even if there is a high interdigitation with the opposing chains. The extent of this back-bending was similar to that in chain symmetric bilayers. For both cases of adaptation to chain length mismatch, chain-asymmetry has a large impact on hydrocarbon chain ordering, inducing disorder in the longer of the two hydrocarbons.more » « less
-
Classical molecular dynamics simulations of the hydration thermodynamics, structure, and dynamics of water in hydration shells of charged buckminsterfullerenes are presented in this study. Charging of fullerenes leads to a structural transition in the hydration shell, accompanied by creation of a significant population of dangling O–H bonds pointing toward the solute. In contrast to the well accepted structure–function paradigm, this interfacial structural transition causes nearly no effect on either the dynamics of hydration water or on the solvation thermodynamics. Linear response to the solute charge is maintained despite significant structural changes in the hydration shell, and solvation thermodynamic potentials are nearly insensitive to the altering structure. Only solvation heat capacities, which are higher thermodynamic derivatives of the solvation free energy, indicate some sensitivity to the local hydration structure. We have separated the solvation thermodynamic potentials into direct solute–solvent interactions and restructuring of the hydration shell and analyzed the relative contributions of electrostatic and nonpolar interactions to the solvation thermodynamics.more » « less
An official website of the United States government
