skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Quantification of dissolved metabolites in environmental samples through cation‐exchange solid‐phase extraction paired with liquid chromatography–mass spectrometry
Abstract Small, biologically produced, organic molecules called metabolites play key roles in microbial systems where they directly mediate exchanges of nutrients, energy, and information. However, the study of dissolved polar metabolites in seawater and other environmental matrices has been hampered by analytical challenges including high inorganic ion concentrations, low analyte concentrations, and high chemical diversity. Here we show that a cation‐exchange solid‐phase extraction (CX‐SPE) sample preparation approach separates positively charged and zwitterionic metabolites from seawater and freshwater samples, allowing their analysis by liquid chromatography–mass spectrometry. We successfully extracted 69 known compounds from an in‐house compound collection and evaluated the performance of the method by establishing extraction efficiencies (EEs) and limits of detection (pM to low nM range) for these compounds. CX‐SPE extracted a range of compounds including amino acids and compatible solutes, resulted in very low matrix effects, and performed robustly across large variations in salinity and dissolved organic matter concentration. We compared CX‐SPE to an established SPE procedure (PPL‐SPE) and demonstrate that these two methods extract fundamentally different fractions of the dissolved metabolite pool with CX‐SPE extracting compounds that are on average smaller and more polar. We use CX‐SPE to analyze four environmental samples from distinct aquatic biomes, producing some of the first CX‐SPE dissolved metabolomes. Quantified compounds ranged in concentration from 0.0093 to 49 nM and were composed primarily of amino acids (0.15–16 nM) and compatible solutes such as trimethylamine N‐oxide (0.89–49 nM) and glycine betaine (2.8–5.2 nM).  more » « less
Award ID(s):
2125886
PAR ID:
10654994
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
ASLO
Date Published:
Journal Name:
Limnology and Oceanography: Methods
Volume:
20
Issue:
11
ISSN:
1541-5856
Page Range / eLocation ID:
683 to 700
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Synopsis Intense bottom-ice algal blooms, often dominated by diatoms, are an important source of food for grazers, organic matter for export during sea ice melt, and dissolved organic carbon. Sea-ice diatoms have a number of adaptations, including accumulation of compatible solutes, that allows them to inhabit this highly variable environment characterized by extremes in temperature, salinity, and light. In addition to protecting them from extreme conditions, these compounds present a labile, nutrient-rich source of organic matter, and include precursors to climate active compounds (e.g., dimethyl sulfide [DMS]), which are likely regulated with environmental change. Here, intracellular concentrations of 45 metabolites were quantified in three sea-ice diatom species and were compared to two temperate diatom species, with a focus on compatible solutes and free amino acid pools. There was a large diversity of metabolite concentrations between diatoms with no clear pattern identifiable for sea-ice species. Concentrations of some compatible solutes (isethionic acid, homarine) approached 1 M in the sea-ice diatoms, Fragilariopsis cylindrus and Navicula cf. perminuta, but not in the larger sea-ice diatom, Nitzschia lecointei or in the temperate diatom species. The differential use of compatible solutes in sea-ice diatoms suggests different adaptive strategies and highlights which small organic compounds may be important in polar biogeochemical cycles. 
    more » « less
  2. Abstract Seasonal cycles within the marginal ice zones in polar regions include large shifts in temperature and salinity that strongly influence microbial abundance and physiology. However, the combined effects of concurrent temperature and salinity change on microbial community structure and biochemical composition during transitions between seawater and sea ice are not well understood. Coastal marine communities along the western Antarctic Peninsula were sampled and surface seawater was incubated at combinations of temperature and salinity mimicking the formation (cold, salty) and melting (warm, fresh) of sea ice to evaluate how these factors may shape community composition and particulate metabolite pools during seasonal transitions. Bacterial and algal community structures were tightly coupled to each other and distinct across sea-ice, seawater, and sea-ice-meltwater field samples, with unique metabolite profiles in each habitat. During short-term (approximately 10-day) incubations of seawater microbial communities under different temperature and salinity conditions, community compositions changed minimally while metabolite pools shifted greatly, strongly accumulating compatible solutes like proline and glycine betaine under cold and salty conditions. Lower salinities reduced total metabolite concentrations in particulate matter, which may indicate a release of metabolites into the labile dissolved organic matter pool. Low salinity also increased acylcarnitine concentrations in particulate matter, suggesting a potential for fatty acid degradation and reduced nutritional value at the base of the food web during freshening. Our findings have consequences for food web dynamics, microbial interactions, and carbon cycling as polar regions undergo rapid climate change. 
    more » « less
  3. Metabolomics is a tool with immense potential for providing insight into the impact of biological processes on the environment. Here, we used metabolomics methods to characterize intracellular metabolites within marine microorganisms during a manipulation experiment that was designed to test the impact of two sources of microbial mortality, protozoan grazing and viral lysis. Intracellular metabolites were analyzed with targeted and untargeted mass spectrometry methods. The treatment with reduced viral mortality showed the largest changes in metabolite concentrations, although there were organic compounds that shifted when the impact of protozoan grazers was reduced. Intracellular concentrations of guanine, phenylalanine, glutamic acid, and ectoine presented significant responses to changes in the source of mortality. Unexpectedly, variability in metabolite concentrations were not accompanied by increases in microbial abundance which indicates that marine microorganisms altered their internal organic carbon stores without changes in biomass or microbial growth. We used Weighted Correlation Network Analysis (WGCNA) to identify correlations between the targeted and untargeted mass spectrometry data. This analysis revealed multiple unknown organic compounds were correlated with compatible solutes, also called osmolytes or chemical chaperones, which emphasizes the dominant role of compatible solutes in marine microorganisms. 
    more » « less
  4. Abstract Dissolved primary production released into seawater by marine phytoplankton is a major source of carbon fueling heterotrophic bacterial production in the ocean. The composition of the organic compounds released by healthy phytoplankton is poorly known and difficult to assess with existing chemical methods. Here, expression of transporter and catabolic genes by three model marine bacteria ( Ruegeria pomeroyi DSS-3, Stenotrophomonas sp. SKA14, and Polaribacter dokdonensis MED152) was used as a biological sensor of metabolites released from the picoeukaryote Micromonas commoda RCC299. Bacterial expression responses indicated that the three species together recognized 38 picoeukaryote metabolites. This was consistent with the Micromonas expression of genes for starch metabolism and synthesis of peptidoglycan-like intermediates. A comparison of the hypothesized Micromonas exometabolite pool with that of the diatom Thalassiosira pseudonana CCMP1335, analyzed previously with the same biological sensor method, indicated that both phytoplankton released organic acids, nucleosides, and amino acids, but differed in polysaccharide and organic nitrogen release. Future ocean conditions are expected to favor picoeukaryotic phytoplankton over larger-celled microphytoplankton. Results from this study suggest that such a shift could alter the substrate pool available to heterotrophic bacterioplankton. 
    more » « less
  5. Coral reef ecosystems are incredibly diverse marine biomes that rely on nutrient cycling by microorganisms to sustain high productivity in generally oligotrophic regions of the ocean. Understanding the composition of extracellular reef metabolites in seawater, the small organic molecules that serve as the currency for microorganisms, may provide insight into benthic-pelagic coupling as well as the complexity of nutrient cycling in coral reef ecosystems. Jardines de la Reina (JR), Cuba is an ideal environment to examine extracellular metabolites across protected and high-quality reefs. Here, we used liquid chromatography mass spectrometry (LC-MS) to quantify specific known metabolites of interest (targeted metabolomics approach) and to survey trends in metabolite feature composition (untargeted metabolomics approach) from surface and reef depth (6 – 14 m) seawater overlying nine forereef sites in JR. We found that untargeted metabolite feature composition was surprisingly similar between reef depth and surface seawater, corresponding with other biogeochemical and physicochemical measurements and suggesting that environmental conditions were largely homogenous across forereefs within JR. Additionally, we quantified 32 of 53 detected metabolites using the targeted approach, including amino acids, nucleosides, vitamins, and other metabolic intermediates. Two of the quantified metabolites, riboflavin and xanthosine, displayed interesting trends by depth. Riboflavin concentrations were higher in reef depth compared to surface seawater, suggesting that riboflavin may be produced by reef organisms at depth and degraded in the surface through photochemical oxidation. Xanthosine concentrations were significantly higher in surface reef seawater. 5′-methylthioadenosine (MTA) concentrations increased significantly within the central region of the archipelago, displaying biogeographic patterns that warrant further investigation. Here we lay the groundwork for future investigations of variations in metabolite composition across reefs, sources and sinks of reef metabolites, and changes in metabolites over environmental, temporal, and reef health gradients. 
    more » « less