Cortical neurons are characterized by their variable spiking patterns. Here, we examine the specific hypothesis that cortical synchrony drives spiking variability in vivo. Using dynamic clamps, we demonstrate that intrinsic neuronal properties do not contribute substantially to spiking variability, but rather spiking variability emerges from weakly synchronous network drive. With large-scale electrophysiology, we quantify the degree of synchrony and its timescale in cortical networks in vivo. The timescale of synchrony shifts in a range from 25 to 200 ms, depending on the presence of external sensory input. In particular, when the network moves from spontaneous to driven modes, the synchrony timescales shift from slow to fast, leading to a natural reduction in response variability across cortical areas. Finally, while an individual neuron exhibits reliable responses to physiological drive, different neurons respond in a distinct fashion according to their intrinsic properties, contributing to stable synchrony across the neural network.
more »
« less
This content will become publicly available on October 31, 2026
Subthreshold moment analysis of neuronal populations driven by synchronous synaptic inputs
Even when driven by the same stimulus, neuronal responses are well-known to exhibit a striking level of spiking variability. In-vivo electrophysiological recordings also reveal a surprisingly large degree of variability at the subthreshold level. In prior work, we considered biophysically relevant neuronal models to account for the observed magnitude of membrane voltage fluctuations. We found that accounting for these fluctuations requires weak but nonzero synchrony in the spiking activity, in amount that are consistent with experimentally measured spiking correlations. Here we investigate whether such synchrony can explain additional statistical features of the measured neural activity, including neuronal voltage covariability and voltage skewness. Addressing this question involves conducting a generalized moment analysis of conductance-based neurons in response to input drives modeled as correlated jump processes. Technically, we perform such an analysis using fixed-point techniques from queuing theory that are applicable in the stationary regime of activity. We found that weak but nonzero synchrony can consistently explain the experimentally reported voltage covariance and skewness. This confirms the role of synchrony as a primary driver of cortical variability and supports that physiological neural activity emerges as a population-level phenomenon, especially in the spontaneous regime.
more »
« less
- PAR ID:
- 10655006
- Editor(s):
- Jolivet, Renaud Blaise
- Publisher / Repository:
- PLOS
- Date Published:
- Journal Name:
- PLOS Computational Biology
- Volume:
- 21
- Issue:
- 10
- ISSN:
- 1553-7358
- Page Range / eLocation ID:
- e1013645
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Manto, Mario (Ed.)Background Cerebellar electrical stimulation has shown promise in improving motor recovery post-stroke in both rodent and human studies. Past studies have used motor evoked potentials (MEPs) to evaluate how cerebellar stimulation modulates ongoing activity in the cortex, but the underlying mechanisms are incompletely understood. Here we used invasive electrophysiological recordings from the intact and stroke-injured rodent primary motor cortex (M1) to assess how epidural cerebellar stimulation modulates neural dynamics at the level of single neurons as well as at the level of mesoscale dynamics. Methods We recorded single unit spiking and local field potentials (LFPs) in both the intact and acutely stroke-injured M1 contralateral to the stimulated cerebellum in adult Long-Evans rats under anesthesia. We analyzed changes in the firing rates of single units, the extent of synchronous spiking and power spectral density (PSD) changes in LFPs during and post-stimulation. Results Our results show that post-stimulation, the firing rates of a majority of M1 neurons changed significantly with respect to their baseline rates. These firing rate changes were diverse in character, as the firing rate of some neurons increased while others decreased. Additionally, these changes started to set in during stimulation. Furthermore, cross-correlation analysis showed a significant increase in coincident firing amongst neuronal pairs. Interestingly, this increase in synchrony was unrelated to the direction of firing rate change. We also found that neuronal ensembles derived through principal component analysis were more active post-stimulation. Lastly, these changes occurred without a significant change in the overall spectral power of LFPs post-stimulation. Conclusions Our results show that cerebellar stimulation caused significant, long-lasting changes in the activity patterns of M1 neurons by altering firing rates, boosting neural synchrony and increasing neuronal assemblies’ activation strength. Our study provides evidence that cerebellar stimulation can directly modulate cortical dynamics. Since these results are present in the perilesional cortex, our data might also help explain the facilitatory effects of cerebellar stimulation post-stroke.more » « less
-
Coordinated ensemble spiking activity is widely observable in neural recordings and central in the study of population codes, with hypothesized roles including robust stimulus representation, interareal communication of neural information, and learning and memory formation. Model-free measures of synchrony characterize the coherence of pairwise activity, but not higher-order interactions; this limitation is transcended by statistical models of ensemble spiking activity. However, existing model-based analyses often impose assumptions about the relevance of higher-order interactions and require multiple repeated trials in order to characterize dynamics in the correlational structure of ensemble activity. To address these shortcomings, we propose an adaptive greedy filtering algorithm based on a discretized mark point-process model of ensemble spiking and a corresponding precise statistical inference framework to identify significant coordinated higher-order spiking activity. In the course of developing the statistical inference procedures, we also show that confidence intervals can be constructed for greedily estimated parameters. We demonstrate the utility of our proposed methods on simulated neuronal assemblies. Applied to multi-electrode recordings of human cortical ensembles, our proposed methods provide new insights into the dynamics underlying localized population activity during transitions between brain states.more » « less
-
Coordinated ensemble spiking activity is widely observable in neural recordings and central in the study of population codes, with hypothesized roles including robust stimulus representation, interareal communication of neural information, and learning and memory formation. Model-free measures of synchrony characterize the coherence of pairwise activity, but not higher-order interactions; this limitation is transcended by statistical models of ensemble spiking activity. However, existing model-based analyses often impose assumptions about the relevance of higher-order interactions and require multiple repeated trials in order to characterize dynamics in the correlational structure of ensemble activity. To address these shortcomings, we propose an adaptive greedy filtering algorithm based on a discretized mark point process model of ensemble spiking and a corresponding precise statistical inference framework to identify significant coordinated higher-order spiking activity. In the course of developing the statistical inference procedures, we also show that confidence intervals can be constructed for greedily estimated parameters. We demonstrate the utility of our proposed methods on simulated neuronal assemblies. Applied to multi-electrode recordings of human cortical ensembles, our proposed methods provide new insights into the dynamics underlying localized population activity during transitions between brain states.more » « less
-
Marinazzo, Daniele (Ed.)Central in the study of population codes, coordinated ensemble spiking activity is widely observable in neural recordings with hypothesized roles in robust stimulus representation, interareal communication, and learning and memory formation. Model-free measures of synchrony characterize coherent pairwise activity but not higher-order interactions, a limitation transcended by statistical models of ensemble spiking activity. However, existing model-based analyses often impose assumptions about the relevance of higher-order interactions and require repeated trials to characterize dynamics in the correlational structure of ensemble activity. To address these shortcomings, we propose an adaptive greedy filtering algorithm based on a discretized mark point-process model of ensemble spiking and a corresponding statistical inference framework to identify significant higher-order coordination. In the course of developing a precise statistical test, we show that confidence intervals can be constructed for greedily estimated parameters. We demonstrate the utility of our proposed methods on simulated neuronal assemblies. Applied to multi-electrode recordings from human and rat cortical assemblies, our proposed methods provide new insights into the dynamics underlying localized population activity during transitions between brain states.more » « less
An official website of the United States government
