skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2239679

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Cortical neurons are characterized by their variable spiking patterns. Here, we examine the specific hypothesis that cortical synchrony drives spiking variability in vivo. Using dynamic clamps, we demonstrate that intrinsic neuronal properties do not contribute substantially to spiking variability, but rather spiking variability emerges from weakly synchronous network drive. With large-scale electrophysiology, we quantify the degree of synchrony and its timescale in cortical networks in vivo. The timescale of synchrony shifts in a range from 25 to 200 ms, depending on the presence of external sensory input. In particular, when the network moves from spontaneous to driven modes, the synchrony timescales shift from slow to fast, leading to a natural reduction in response variability across cortical areas. Finally, while an individual neuron exhibits reliable responses to physiological drive, different neurons respond in a distinct fashion according to their intrinsic properties, contributing to stable synchrony across the neural network. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026
  2. Jolivet, Renaud Blaise (Ed.)
    Even when driven by the same stimulus, neuronal responses are well-known to exhibit a striking level of spiking variability. In-vivo electrophysiological recordings also reveal a surprisingly large degree of variability at the subthreshold level. In prior work, we considered biophysically relevant neuronal models to account for the observed magnitude of membrane voltage fluctuations. We found that accounting for these fluctuations requires weak but nonzero synchrony in the spiking activity, in amount that are consistent with experimentally measured spiking correlations. Here we investigate whether such synchrony can explain additional statistical features of the measured neural activity, including neuronal voltage covariability and voltage skewness. Addressing this question involves conducting a generalized moment analysis of conductance-based neurons in response to input drives modeled as correlated jump processes. Technically, we perform such an analysis using fixed-point techniques from queuing theory that are applicable in the stationary regime of activity. We found that weak but nonzero synchrony can consistently explain the experimentally reported voltage covariance and skewness. This confirms the role of synchrony as a primary driver of cortical variability and supports that physiological neural activity emerges as a population-level phenomenon, especially in the spontaneous regime. 
    more » « less
    Free, publicly-accessible full text available October 31, 2026
  3. Free, publicly-accessible full text available March 17, 2026