In this study, unidirectional carbon fiber prepregs that contain long carbon nanofiber (CNF) z threads as a through-thickness (z-directional) reinforcement were manufactured. The CNF z threads are long enough to thread through multiple carbon fiber (CF) arrays, which creates a multi-scale CNF/CF/resin-composite. The CNF z-threaded prepregs were manufactured using an electric-field aligned flow-transferring process. It was hypothesized that the CNF z-threads with the zig-zag threading pattern reinforces the interlaminar and intralaminar regions of the CFRP laminate thus improve the compressive strength by reducing the chance of carbon fiber buckling. Compressive testing was performed per modified version of ASTM D695 (i.e., SACMA SRM 1R 94) to evaluate the compressive strength of the CNF z-threaded CFRP (ZT-CFRP) laminates. The samples were manufactured using AS4 carbon fibers, EPON 862/Epikure-W resin and a 1wt% CNF content. ZT-CFRP testing results were compared with unaligned CNF-modified CFRP (UA-CFRP) and unmodified CFRP samples to investigate the impact of the CNF z-threads on the compressive strength. Results showed an increase of ~15% for the compressive strength of ZT CFRPs, whereas the UA-CFRPs experienced a decrease of ~8% when compared to unmodified CFRPs. It was concluded that CNF/carbon fiber interlocking stops and delays crack growth, and helps to stabilize carbon fibers from further buckling.
more »
« less
This content will become publicly available on August 4, 2026
Evaluation of the effect of z-threaded carbon nanofibers on the improvement of flexural properties of carbon fiber-reinforced polymer laminates using the 3-point bending test
As a next generation composite material, carbon fiber reinforced polymer (CFRP) has great potential to be widely used in manufacturing industries due to its outstanding mechanical properties. The high strength to weight ratio, and high stiffness inherent to CFRPs make them a desired material in various kinds of applications. CFRPs frequently experience bending loads while in use for such things as aircraft, automobiles, bridges, etc. Anisotropic behavior and limited in through thickness properties are major concerns which affect the performance of CFRPs. Moreover, in the interlaminar region, traditional CFRPs are often vulnerable to matrix sensitive damage such as compressive failure, delamination, and shear failure due to the absence of enough strength in through thickness direction. The tensile and compressive stress generated by the bending loads can weaken the interlaminar shear properties due to the absence of fibers in through thickness and ultimately can lead to catastrophic failure. This study introduces a novel approach with z-threaded CFRP (ZT-CFRP), which incorporates electrically aligned z-threaded carbon nanofibers (CNFs) as reinforcement. Flexural test using 3-point bending was performed on both control CFRP and ZT-CFRP samples reinforced with 1.0 wt.% carbon nanofiber z-threads. The results showed a 15% improvement in the flexural strength and about 36% linear elastic range increase for the ZT-CFRP laminates compared to the unmodified CFRP laminates, and validated the effectiveness of nanofiber Z-threading strategy in strengthening composite materials against flexural loading.
more »
« less
- PAR ID:
- 10655020
- Publisher / Repository:
- International Conference on Composite Materials (ICCM)
- Date Published:
- Subject(s) / Keyword(s):
- Nano materials, Flexural Property, CFRP, Bending Test
- Format(s):
- Medium: X
- Location:
- Baltimore, MD, USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Previously reported vertical UL-94 testing results showed that carbon nanofiber z-threaded carbon fiber-reinforced polymer (ZT-CFRP) laminates have significantly improved flame resistance capabilities compared to traditional carbon fiber-reinforced (CFRP) laminates. Shorter flame self-extinguishing times and no flame propagation were reported. These characteristics provided evidence that ZT-CFRP’s unique microstructure, combined with its inherent strengthened mechanical, thermal, and electrical properties, has the potential to have more favorable high-temperature applications than traditional CFRP. This study examined the interlaminar shear strength (ILSS) enhancement of ZT-CFRP laminates, in comparison to traditional CFRP, when exposed to gradually increased temperatures. This was accomplished through the use of a furnace and an in-house constructed three-point bending apparatus capable of supplying static loading to determine the temperature at which failure occurred. The apparatus was loaded with a specimen and then placed inside the furnace where the temperature was allowed to increase based upon a consistent heating schedule. It was observed that ZT-CFRP samples had an approximately 30 ˚C improvement in temperature handling capabilities while exposed to an interlaminar shear load when compared to CFRP samples. Microscopic image analysis was also performed to observe how CNF z-threads contributed to the improved performance observed for ZT-CFRP at extreme elevated temperatures.more » « less
-
Previous studies have provided evidence that reinforcement of epoxy adhesives with nanostructures such as carbon nanofibers (CNFs) produces higher strength bonded joints between carbon fiber reinforced polymer (CFRP) laminates and shifts bond-line failure modes from the adhesive into the laminate. Despite this, there has been no research dedicated to applying reinforced adhesives to the bonding of nano-reinforced CFRP such as CNF z-threaded carbon fiber reinforced polymer (ZT-CFRP) laminates, which have been proven to exhibit increased interlaminar shear strength, mode-I delamination toughness, and compressive strength over traditional CFRP. This study examined the effectiveness of using CNF reinforced epoxy adhesives for unidirectional ZT-CFRP laminate bonding through single-lap shear tests using the ASTM D5868-01 standard. Unidirectional CFRP laminate samples bonded with both epoxy adhesive and CNF reinforced epoxy adhesive were also tested for comparison. It was found that the average shear strength observed for ZT-CFRP samples bonded with CNF reinforced epoxy adhesive was approximately 44% and 26 % higher than that of CFRP samples bonded with epoxy adhesive and CNF reinforced epoxy adhesive, respectively. Microscopic image analysis was performed to examine the mode of bond failure. The roles of nanomaterials in the fracture mechanism of the adhesives and the composite laminates are also discussed.more » « less
-
Moisture is a known issue for carbon fiber reinforced polymer (CFRP) manufacturing. During the process, in which a CFRP prepreg is carefully thawed, cut, stacked, and cured into a laminate, any bad moisture control can cause voids, affect the curing, and degrade the laminate. Recent studies of carbon nanofiber z-threaded CFRP (i.e., ZT-CFRP) prepreg and its laminates showed significant multifunctional improvements in the mechanical strengths, toughness, thermal conductivity, and electrical conductivity. The carbon nanofibers zig-zag thread among the carbon fibers in the through-thickness direction (i.e., z-direction) and mechanically interlock the fiber system together to form an effective 3D-fiber-network reinforced laminate. This paper presents a preliminary experimental study on the ZT-CFRP prepreg when facing the moisture exposure during the prepreg handling and lamination process. Both the ZT-CFRP and traditional CFRP prepregs, subjected to different humidity conditions, will be cut, and cured into laminate samples. The samples will be tested for their interlaminar shear strengths (ILSS) and hardness. Microscope pictures of the samples' fracture patterns will be compared for explaining the combined impact of the moistures and the carbon nanofiber z-threading strategy on the laminates' interlaminar shear strength and curing state.more » « less
-
Previous studies have shown that carbon nanofiber (CNF) z-threaded carbon fiber-reinforced polymer (ZT-CFRP) laminates exhibit improved mechanical performance in comparison to traditional carbon fiber-reinforced polymer (CFRP) laminates when exposed to extreme elevated temperatures. Z-threaded reinforcement is a technique for strengthening the through-thickness of a laminate by introducing perpendicularly aligned carbon nanomaterial to be threading into the continuous fiber array. Improved performance has already been observed in properties such as interlaminar shear strength (ILSS) without extreme heat exposure, but there has also been evidence that z-thread inclusion may mitigate strength loss due to thermal degradation of the matrix. This study examined how ILSS was diminished in both CFRP and ZT-CFRP samples with matrix degradation caused by extreme temperature exposure. Test samples were heated to 350 ˚C for 10 minutes and then allowed to return to room temperature. SBS testing in accordance with ASTM D2344 was conducted on both untreated and heat-treated samples for comparison. All samples were at room temperature during testing. It was found that ZT-CFRP samples (with 0.5wt% CNF concentration the matrix) exhibited higher ILSS with and without heat treatment over the traditional CFRP samples with and without heat treatment by +33.96% and +25.12%, respectively. ZT-CFRP ILSS was found to decrease by 10.584 MPa (-14.56%) after the extreme heat treatment, while CFRP ILSS decreased by only 4.627 MPa (-8.53%). Microscopic image analysis was also performed to provide insight into how the CNF z-threads may have provided a mechanism for retaining ILSS performance even with matrix thermal degradation.more » « less
An official website of the United States government
