In this study, unidirectional carbon fiber prepregs that contain long carbon nanofiber (CNF) z threads as a through-thickness (z-directional) reinforcement were manufactured. The CNF z threads are long enough to thread through multiple carbon fiber (CF) arrays, which creates a multi-scale CNF/CF/resin-composite. The CNF z-threaded prepregs were manufactured using an electric-field aligned flow-transferring process. It was hypothesized that the CNF z-threads with the zig-zag threading pattern reinforces the interlaminar and intralaminar regions of the CFRP laminate thus improve the compressive strength by reducing the chance of carbon fiber buckling. Compressive testing was performed per modified version of ASTM D695 (i.e., SACMA SRM 1R 94) to evaluate the compressive strength of the CNF z-threaded CFRP (ZT-CFRP) laminates. The samples were manufactured using AS4 carbon fibers, EPON 862/Epikure-W resin and a 1wt% CNF content. ZT-CFRP testing results were compared with unaligned CNF-modified CFRP (UA-CFRP) and unmodified CFRP samples to investigate the impact of the CNF z-threads on the compressive strength. Results showed an increase of ~15% for the compressive strength of ZT CFRPs, whereas the UA-CFRPs experienced a decrease of ~8% when compared to unmodified CFRPs. It was concluded that CNF/carbon fiber interlocking stops and delays crack growth, and helps to stabilize carbon fibers from further buckling.
more »
« less
This content will become publicly available on December 1, 2026
Influence of electrically aligned carbon nanofiber Z-threading on the fatigue behavior of CFRP composites
A rapid fatigue characterization method using full-field temporal surface temperature measurements has been used to study the effect of microstructural modification in unidirectional carbon fiber reinforced plastics (UD- CFRP) via electrically aligned Z-threaded carbon nanofibers (CNF). 1 wt% CNF were aligned in the Z-direction via electric means using a patented roll-to-roll process, enabling ZT-CNF-CFRP prepreg production. Three conf igurations were tested under fatigue: ZT-CNF-UD-CFRP (ZTE), UD-CFRPs with Unaligned CNF, and UD-CFRPs without CNF (Control). Mean surface temperatures measured via passive infrared thermography (IRT) was used to estimate the fatigue limit for these materials using a staircase loading method. Further, harmonic analysis of the obtained temporal full-field temperature data was used to monitor the damage evolution. Finally, the fatigue limit was also determined using the residual threshold method based on the second harmonic signal. Fatigue limits obtained for the three configurations via the bi-linear method were 62.36 ± 0.42 % σ 64.7 ± 1.83 % σ uts for Unaligned and 49.29 ± 2.47 % σ uts uts for ZTE, for Control. While the presence of 1 wt% CNF improves the fatigue limit; the effect of Z-threading could not be accurately quantified since the Z-threading manufacturing process was found to increase the matrix content of the composite. CNF Z-threads increased thermal conductivity, enabling better in situ damage monitoring. Different failure modes were found and discussed to understand the roles of CNF in the fatigue behavior of UD-CFRP laminates.
more »
« less
- PAR ID:
- 10655021
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Composites Part A: Applied Science and Manufacturing
- Volume:
- 199
- Issue:
- C
- ISSN:
- 1359-835X
- Page Range / eLocation ID:
- 109193
- Subject(s) / Keyword(s):
- Infrared thermography, Fatigue, CFRP, CNF Z-threads, Second harmonic
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper utilizes a periodic unit cell modeling technique combined with finite element analysis (FEA) to predict and understand the mechanical behaviors of a nanotechnology-enhanced carbon fiber reinforced polymers (CFRPs) composite. This research specifically focuses on the study of novel Z-threaded CFRPs (ZT-CFRPs) that are reinforced not only by unidirectional carbon fibers but also with numerous carbon nanofibers (CNFs) threading through the CFRP laminate in the z-direction (i.e., through-thickness direction). The complex multi-scaled orthogonally-structured carbon reinforced polymer composite is modeled starting from a periodic unit cell, which is the smallest periodic building-block representation of the material. The ZT-CFRP unit cell includes three major components, i.e., carbon fibers, polymer matrix, and carbon nanofiber Z-threads. To compare the mechanical behavior of ZT-CFRPs against unmodified, control CFRPs, an additional unit cell without CNF reinforcement was also created and analyzed. The unit cells were then meshed into finite element models and subjected to different loading conditions to predict the interaction among all their components. The elastic moduli of both unit-cells in the z-direction were calculated from the FEA data. By assuming the CNFs have the same mechanical properties of T-300 carbon fiber, the numerical modeling showed that the ZT-CFRPs exhibited a 14% improvement in z-directional elastic modulus due to the inclusion of 1 wt% CNF z-threads, indicating that ZT-CFRPs are stiffer compared to control CFRPs consisting of T-300 carbon fibers and epoxy.more » « less
-
The matrix sensitive weaknesses of Carbon Fiber Reinforced Polymer (CFRP) laminates are usually magnified by mainstream additive manufacturing (AM) methods due to the AM-process-induced voids and defects. In this paper, a novel Magnetic Compaction Force Assisted-Additive Manufacturing (MCFA-AM) method is used to print Carbon Nanofibers (CNF) Z-threaded CFRP (i.e., ZT-CFRP) composite laminates. The MCFA-AM method utilizes a magnetic force to simultaneously support, deposit, and compact Continuous Carbon Fiber Reinforced Polymer (C-CFRP) composites in free space and quickly solidifies the CFRP part without any mold; it effectively reduces the voids. Past research proved that the zig-zag threading pattern of the CNF z-threads reinforces the interlaminar and intralaminar regions in the ZT-CFRP laminates manufactured by the traditional Out of Autoclave-Vacuum Bag Only (OOA-VBO) method, and enhances the matrix sensitive mechanical, thermal, and electrical properties. In this study, the longitudinal compressive test (ASTM D695, i.e., SACMA SRM 1R-94) was performed on the MCFA-AM printed ZT-CFRP laminate. The results were compared with unaligned CNF-modified CFRP (UA-CFRP), control CFRP, and no-pressure CFRP samples’ data to investigate the impact of the CNF z-threads and MCFA-AM process on the CFRP’s performance. The 0.5-bar MCFA-AM printed ZT-CFRP showed comparable longitudinal compressive strength with the 1-bar OOA-VBO cured CFRP.more » « less
-
As a next generation composite material, carbon fiber reinforced polymer (CFRP) has great potential to be widely used in manufacturing industries due to its outstanding mechanical properties. The high strength to weight ratio, and high stiffness inherent to CFRPs make them a desired material in various kinds of applications. CFRPs frequently experience bending loads while in use for such things as aircraft, automobiles, bridges, etc. Anisotropic behavior and limited in through thickness properties are major concerns which affect the performance of CFRPs. Moreover, in the interlaminar region, traditional CFRPs are often vulnerable to matrix sensitive damage such as compressive failure, delamination, and shear failure due to the absence of enough strength in through thickness direction. The tensile and compressive stress generated by the bending loads can weaken the interlaminar shear properties due to the absence of fibers in through thickness and ultimately can lead to catastrophic failure. This study introduces a novel approach with z-threaded CFRP (ZT-CFRP), which incorporates electrically aligned z-threaded carbon nanofibers (CNFs) as reinforcement. Flexural test using 3-point bending was performed on both control CFRP and ZT-CFRP samples reinforced with 1.0 wt.% carbon nanofiber z-threads. The results showed a 15% improvement in the flexural strength and about 36% linear elastic range increase for the ZT-CFRP laminates compared to the unmodified CFRP laminates, and validated the effectiveness of nanofiber Z-threading strategy in strengthening composite materials against flexural loading.more » « less
-
Traditional Carbon Fiber Reinforced Plastics (CFRPs), carry high in-plane strength and electrical conductivity but exhibit intrinsic weaknesses in strength, toughness and conductivity in the through-thickness direction (i.e. z-direction). This paper presents a novel approach to align and thread Carbon Nanofibers (CNFs) through the porous medium (Carbon fiber fabric) using an interesting radial-flow alignment method and manufacture a novel CNFs z-threaded CFRP prepreg. This new radial-flow alignment approach is unique and has been found highly effective to z-thread the array of carbon fibers (diameter ~ 7 microns) with numerous long CNFs (length ~ 50-200 microns) under a Scanning Electronic Microscope (SEM) analysis. Experimental tests performed on a cured laminate sample prepared by this novel technique with 1 wt% aligned CNF concentration showed a significant improvement on the z-directional electrical conductivity for direct current (DC). The 1 wt% CNFs z-threaded CFRP was found about 100 times as conductive as the control CFRP; whereas the unaligned 1 wt% CNFs modified CFRP was only about 16 times as conductive as the control sample.more » « less
An official website of the United States government
