skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 1, 2026

Title: Testing the three-stage model of second language skill acquisition
Abstract Skill acquisition theory conceptualizes second language (L2) learning in three stages (declarative, procedural, and automatic), yet competing theoretical models with fewer stages also exist, and the number of stages has never actually been tested. We tested the validity of the three-stage model by investigating the number and nature of learning stages in L2 skill acquisition. Seventy-three participants deliberately learned grammar and vocabulary of a miniature language through explicit-deductive instruction. They systematically practiced comprehending the language until their accuracy and speed of performance did not improve anymore. Participants received a battery of tests assessing individual differences in their declarative and procedural learning abilities. We first applied hidden Markov modeling to participants’ reaction time data (obtained from the language practice) to compare rival hypotheses on the number of stages in L2 skill acquisition. We then examined which cognitive variables predicted participants’ performances (accuracy and speed) in each stage. Our results indicated that participants indeed acquired L2 skills in three stages and that their performance correlated initially with declarative learning ability, but there was a tendency for procedural learning ability to take over in the later stages. Our findings provide the first formal evidence for the influential three-stage model of L2 skill acquisition.  more » « less
Award ID(s):
2140704
PAR ID:
10655060
Author(s) / Creator(s):
;
Publisher / Repository:
Cambridge University Press
Date Published:
Journal Name:
Studies in Second Language Acquisition
Volume:
47
Issue:
2
ISSN:
0272-2631
Page Range / eLocation ID:
617 to 649
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract ADHD has been associated with cortico-striatal dysfunction that may lead to procedural memory abnormalities. Sleep plays a critical role in consolidating procedural memories, and sleep problems are an integral part of the psychopathology of ADHD. This raises the possibility that altered sleep processes characterizing those with ADHD could contribute to their skill-learning impairments. On this basis, the present study tested the hypothesis that young adults with ADHD have altered sleep-dependent procedural memory consolidation. Participants with ADHD and neurotypicals were trained on a visual discrimination task that has been shown to benefit from sleep. Half of the participants were tested after a 12-h break that included nocturnal sleep (sleep condition), whereas the other half were tested after a 12-h daytime break that did not include sleep (wakefulness condition) to assess the specific contribution of sleep to improvement in task performance. Despite having a similar degree of initial learning, participants with ADHD did not improve in the visual discrimination task following a sleep interval compared to neurotypicals, while they were on par with neurotypicals during the wakefulness condition. These findings represent the first demonstration of a failure in sleep-dependent consolidation of procedural learning in young adults with ADHD. Such a failure is likely to disrupt automatic control routines that are normally provided by the non-declarative memory system, thereby increasing the load on attentional resources of individuals with ADHD. 
    more » « less
  2. Categorization has a deep impact on behavior, but whether category learning is served by a single system or multiple systems remains debated. Here, we designed two well-equated nonspeech auditory category learning challenges to draw on putative procedural (information-integration) versus declarative (rule-based) learning systems among adult Hebrew-speaking control participants and individuals with dyslexia, a language disorder that has been linked to a selective disruption in the procedural memory system and in which phonological deficits are ubiquitous. We observed impaired information-integration category learning and spared rule-based category learning in the dyslexia group compared with the neurotypical group. Quantitative model-based analyses revealed reduced use of, and slower shifting to, optimal procedural-based strategies in dyslexia with hypothesis-testing strategy use on par with control participants. The dissociation is consistent with multiple category learning systems and points to the possibility that procedural learning inefficiencies across categories defined by complex, multidimensional exemplars may result in difficulty in phonetic category acquisition in dyslexia. 
    more » « less
  3. Free-body diagrams (FBDs) are diagrammatic representations of external forces and moments exerted on an object of interest for solving kinetics problems. Several studies have reported different ways of teaching FBDs in terms of pictorial representation of forces (e.g., placement of vectors or labeling). However, there is little research on practice strategies for helping students learn how to draw FBDs. Through the use of task analysis and a model of subgoal learning, we will develop task-analysis-guided deliberate practice to enhance learning. Task analysis is often used in instructional design to extract knowledge requirements for acquiring a skill. Skill acquisition is usually divided into three phases including declarative, knowledge compilation, and procedural. Task analysis in our study will identify relevant declarative and procedural knowledge related to drawing FBDs. The findings will be used to develop deliberate practice. Deliberate practice can help novices develop good representations of the knowledge needed to produce superior problem solving performance. This has been viewed as a gold standard for practice. Although deliberate practice is mainly studied among elite performers, the recent literature has revealed promising results for novices. Considering cognitive capacity limitations, we will apply cognitive load theory to develop deliberate practice to help students build declarative and procedural knowledge without exceeding their working memory limitations. A knowledge extraction expert will take an iterative approach to conduct task analyses with a subject matter expert (or experts)to distill knowledge to a level that is appropriate for students in the dynamics course. We will then integrate the task analysis results with instructional design strategies derived from cognitive load theory and the subgoal learning model to develop deliberate practice and assessment materials. Examples and assessment results will be provided to evaluate the effectiveness of the instructional design strategies as well as the challenges. 
    more » « less
  4. Free-body diagrams (FBDs) are diagrammatic representations of external forces and moments exerted on an object of interest for solving kinetics problems. Several studies have reported different ways of teaching FBDs in terms of pictorial representation of forces (e.g., placement of vectors or labeling). However, there is little research on practice strategies for helping students learn how to draw FBDs. Through the use of task analysis and a model of subgoal learning, we will develop task-analysis-guided deliberate practice to enhance learning. Task analysis is often used in instructional design to extract knowledge requirements for acquiring a skill. Skill acquisition is usually divided into three phases including declarative, knowledge compilation, and procedural. Task analysis in our study will identify relevant declarative and procedural knowledge related to drawing FBDs. The findings will be used to develop deliberate practice. Deliberate practice can help novices develop good representations of the knowledge needed to produce superior problem solving performance. This has been viewed as a gold standard for practice. Although deliberate practice is mainly studied among elite performers, the recent literature has revealed promising results for novices. Considering cognitive capacity limitations, we will apply cognitive load theory to develop deliberate practice to help students build declarative and procedural knowledge without exceeding their working memory limitations. A knowledge extraction expert will take an iterative approach to conduct task analyses with a subject matter expert (or experts)to distill knowledge to a level that is appropriate for students in the dynamics course. We will then integrate the task analysis results with instructional design strategies derived from cognitive load theory and the subgoal learning model to develop deliberate practice and assessment materials. Examples and assessment results will be provided to evaluate the effectiveness of the instructional design strategies as well as the challenges. 
    more » « less
  5. Multiple studies have reported mathematics underachievement for students who are deaf, but the onset, scope, and causes of this phenomenon remain understudied. Early language deprivation might be one factor influencing the acquisition of numbers. In this study, we investigated a basic and fundamental mathematical skill, automatic magnitude processing, in two formats (Arabic digits and American Sign Language number signs) and the influence of age of first language exposure on both formats by using two versions of the Number Stroop Test. We compared the performance of individuals born deaf who experienced early language deprivation to that of individuals born deaf who experienced sign language in early life and hearing second language learners of ASL. In both formats of magnitude representation, late first language learners demonstrated overall slower reaction times. They were also less accurate on incongruent trials but performed no differently from early signers and second language learners on other trials. When magnitude was represented by Arabic digits, late first language learners exhibited robust Number Stroop Effects, suggesting automatic magnitude processing, but they also demonstrated a large speed difference between size and number judgments not observed in the other groups. In a task with ASL number signs, the Number Stroop Effect was not found in any group, suggesting that magnitude representation might be format-specific, in line with the results from several other languages. Late first language learners also demonstrate unusual patterns of slower reaction time for neutral rather than incongruent stimuli. Together, the results show that early language deprivation affects the ability to automatically judge quantities expressed both linguistically and by Arabic digits, but that it can be acquired later in life when language is available. Contrary to previous studies that find differences in speed of number processing between deaf and hearing participants, we find that when language is acquired early in life, deaf signers perform identically to hearing participants. 
    more » « less