Abstract Rice, an important food resource, is highly sensitive to salt stress, which is directly related to food security. Although many studies have identified physiological mechanisms that confer tolerance to the osmotic effects of salinity, the link between rice genotype and salt tolerance is not very clear yet. Association of gene co‐expression network and rice phenotypic data under stress has penitential to identify stress‐responsive genes, but there is no standard method to associate stress phenotype with gene co‐expression network. A novel method for integration of gene co‐expression network and stress phenotype data was developed to conduct a system analysis to link genotype to phenotype. We applied aLASSO‐based method to the gene co‐expression network of rice with salt stress to discover key genes and their interactions for salt tolerance‐related phenotypes. Submodules in gene modules identified from the co‐expression network were selected by theLASSOregression, which establishes a linear relationship between gene expression profiles and physiological responses, that is, sodium/potassium condenses under salt stress. Genes in these submodules have functions related to ion transport, osmotic adjustment, and oxidative tolerance. We argued that these genes in submodules are biologically meaningful and useful for studies on rice salt tolerance. This method can be applied to other studies to efficiently and reliably integrate co‐expression network and phenotypic data.
more »
« less
This content will become publicly available on November 1, 2026
Adaptive Remodeling of the Proteome in Pistachio Roots Under Salt Stress: Implications for Food and Energy Security in Arid Regions
ABSTRACT Pistachio thrives in semi‐arid and arid environments and is highly adaptable to various abiotic stresses. However, soil salinization significantly threatens productivity, leading to considerable osmotic and ionic stress for these plants. Roots are the primary sites for stress perception and response; however, they remain understudied in woody crops, such asPistachio. This study examines the alterations in root protein expression and metabolic pathways in response to sodium chloride‐induced salt stress through biochemical and proteomic analyses. One‐year‐old pistachio rootstocks were treated with four different saline water regimes over a 100‐day period, and the total proteins were isolated from these samples. Over 1600 protein identifiers were detected, with comparative analysis revealing 245 proteins that were more abundant and 190 that were less abundant across three stress levels. Key pathways associated with stress tolerance, such as protein modification, folding, and heat shock protein (HSP) protection, were upregulated. An increase in secondary metabolites played a crucial role in detoxification. As salt stress intensified, the abundance of trafficking proteins increased, enhancing transporter activities. Active signaling pathways were observed at lower stress levels, while structural proteins became more critical at higher stress levels for maintaining cell membrane integrity. This cultivar exhibited enhanced kinase activities that regulate lipid and carbohydrate metabolism, thereby aiding in ion homeostasis and maintaining redox balance. The protein interaction network, mapped to orthologous proteins inArabidopsis thaliana, revealed clusters associated with cytosolic, carbohydrate, and amino acid metabolism contributing to salinity stress tolerance. The validation of proteomic data was performed by assessing corresponding changes in transcript levels. The study expands upon previous work by providing a comprehensive proteomic map of UCB‐1 pistachio rootstock across multiple salinity levels. The findings have practical implications for developing more resilient cultivars, supporting sustainable pistachio production in regions prone to salinity.
more »
« less
- Award ID(s):
- 2150087
- PAR ID:
- 10655126
- Publisher / Repository:
- Wiley Publisher
- Date Published:
- Journal Name:
- Food and Energy Security
- Volume:
- 14
- Issue:
- 6
- ISSN:
- 2048-3694
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Synopsis The gill proteome of threespine sticklebacks (Gasterosteus aculeatus) differs greatly in populations that inhabit diverse environments characterized by different temperature, salinity, food availability, parasites, and other parameters. To assess the contribution of a specific environmental parameter to such differences it is necessary to isolate its effects from those of other parameters. In this study the effect of environmental salinity on the gill proteome of G. aculeatus was isolated in controlled mesocosm experiments. Salinity-dependent changes in the gill proteome were analyzed by Liquid chromatography/Tandem mass spectrometry data-independent acquisition (DIA) and Skyline. Relative abundances of 1691 proteins representing the molecular phenotype of stickleback gills were quantified using previously developed MSMS spectral and assay libraries in combination with DIA quantitative proteomics. Non-directional stress responses were distinguished from osmoregulatory protein abundance changes by their consistent occurrence during both hypo- and hyper-osmotic salinity stress in six separate mesocosm experiments. If the abundance of a protein was consistently regulated in opposite directions by hyper- versus hypo-osmotic salinity stress, then it was considered an osmoregulatory protein. In contrast, if protein abundance was consistently increased irrespective of whether salinity was increased or decreased, then it was considered a non-directional response protein. KEGG pathway analysis revealed that the salivary secretion, inositol phosphate metabolism, valine, leucine, and isoleucine degradation, citrate cycle, oxidative phosphorylation, and corresponding endocrine and extracellular signaling pathways contain most of the osmoregulatory gill proteins whose abundance is directly proportional to environmental salinity. Most proteins that were inversely correlated with salinity map to KEGG pathways that represent proteostasis, immunity, and related intracellular signaling processes. Non-directional stress response proteins represent fatty and amino acid degradation, purine metabolism, focal adhesion, mRNA surveillance, phagosome, endocytosis, and associated intracellular signaling KEGG pathways. These results demonstrate that G. aculeatus responds to salinity changes by adjusting osmoregulatory mechanisms that are distinct from transient non-directional stress responses to control compatible osmolyte synthesis, transepithelial ion transport, and oxidative energy metabolism. Furthermore, this study establishes salinity as a key factor for causing the regulation of numerous proteins and KEGG pathways with established functions in proteostasis, immunity, and tissue remodeling. We conclude that the corresponding osmoregulatory gill proteins and KEGG pathways represent molecular phenotypes that promote transepithelial ion transport, cellular osmoregulation, and gill epithelial remodeling to adjust gill function to environmental salinity.more » « less
-
Diel rhythms are observed across taxa and are important for maintaining synchrony between the environment and organismal physiology. A striking example of this is the diel vertical migration undertaken by zooplankton, some of which, such as the 5 mm-long copepod Pleuromamma xiphias (P. xiphias), migrate hundreds of meters daily between the surface ocean and deeper waters. Some of the molecular pathways that underlie the expressed phenotype at different stages of this migration are entrained by environmental variables (e.g., day length and food availability), while others are regulated by internal clocks. We identified a series of proteomic biomarkers that vary across ocean DVM and applied them to copepods incubated in 24 h of darkness to assess circadian control. The dark-incubated copepods shared some proteomic similarities to the ocean-caught copepods (i.e., increased abundance of carbohydrate metabolism proteins at night). Shipboard-incubated copepods demonstrated a clearer distinction between night and day proteomic profiles, and more proteins were differentially abundant than in the in situ copepods, even in the absence of the photoperiod and other environmental cues. This pattern suggests that there is a canalization of rhythmic diel physiology in P. xiphias that reflects likely circadian clock control over diverse molecular pathways.more » « less
-
Tandem CCCH zinc finger (TZF) proteins play diverse roles in plant growth and stress response. Although as many as 11 TZF proteins have been identified inArabidopsis, little is known about the mechanism by which TZF proteins select and regulate the target mRNAs. Here, we report thatArabidopsisTZF1 is a bona-fide stress granule protein. Ectopic expression ofTZF1(TZF1 OE), but not an mRNA binding-defective mutant (TZF1H186YOE), enhances salt stress tolerance inArabidopsis. RNA-seq analyses of NaCl-treated plants revealed that the down-regulated genes inTZF1 OEplants are enriched for functions in salt and oxidative stress responses. Because many of these down-regulated mRNAs contain AU- and/or U-rich elements (AREs and/or UREs) in their 3’-UTRs, we hypothesized that TZF1—ARE/URE interaction might contribute to the observed gene expression changes. Results from RNA immunoprecipitation-quantitative PCR analysis, gel-shift, and mRNA half-life assays indicate that TZF1 binds and triggers degradation of theautoinhibited Ca2+-ATPase 11(ACA11) mRNA, which encodes a tonoplast-localized calcium pump that extrudes calcium and dampens signal transduction pathways necessary for salt stress tolerance. Furthermore, this salt stress-tolerance phenotype was recapitulated inaca11null mutants. Collectively, our findings demonstrate that TZF1 binds and initiates degradation of specific mRNAs to enhance salt stress tolerance.more » « less
-
Abstract Salinity tolerance in fish involves a suite of physiological changes, but a cohesive theory leading to a mechanistic understanding at the organismal level is lacking. To examine the potential of adapting energy homeostasis theory in the context of salinity stress in teleost fish,Oreochromis mossambicuswere acclimated to hypersalinity at multiple rates and durations to determine salinity ranges of tolerance and resistance. Over 3000 proteins were quantified simultaneously to analyze molecular phenotypes associated with hypersalinity. A species‐ and tissue‐specific data‐independent acquisition (DIA) assay library of MSMS spectra was created. Protein networks representing complex molecular phenotypes associated with salinity acclimation were generated.O. mossambicushas a wide “zone of resistance” from 75 g/kg salinity to 120 g/kg. Crossing into the zone of resistance resulted in marked phenotypic changes including blood osmolality over 400 mOsm/kg, reduced body condition, and cessation of feeding. Protein networks impacted by hypersalinity consist of electron transport chain (ETC) proteins and specific osmoregulatory proteins. Cytoskeletal, cell adhesion, and extracellular matrix proteins are enriched in networks that are sensitive to the critical salinity threshold. These network analyses identify specific proteome changes that are associated with distinct zones described by energy homeostasis theory and distinguish them from general hypersalinity‐induced proteome changes.more » « less
An official website of the United States government
