This study investigates the impacts of climate change on precipitation and snowpack in the interior western United States (IWUS) using two sets of convection-permitting Weather Research and Forecasting model simulations. One simulation represents the ~1990 climate, and another represents an ~2050 climate using a pseudo-global warming approach. Climate perturbations for the future climate are given by the CMIP5 ensemble-mean global climate models under the high-end emission scenario. The study analyzes the projected changes in spatial patterns of seasonal precipitation and snowpack, with particular emphasis on the effects of elevation on orographic precipitation and snowpack changes in four key mountain ranges: the Montana Rockies, Greater Yellowstone area, Wasatch Range, and Colorado Rockies. The IWUS simulations reveal an increase in annual precipitation across the majority of the IWUS in this warmer climate, driven by more frequent heavy to extreme precipitation events. Winter precipitation is projected to increase across the domain, while summer precipitation is expected to decrease, particularly in the High Plains. Snow-to-precipitation ratios and snow water equivalent are expected to decrease, especially at lower elevations, while snowpack melt is projected to occur earlier by up to 26 days in the ~2050 climate, highlighting significant impacts on regional water resources and hydrological management.
more »
« less
Diverse Characteristics of Extreme Orographic Snowfall Events in Little Cottonwood Canyon, Utah
Abstract Heavy orographic snowfall can disrupt transportation and threaten lives and property in mountainous regions but benefits water resources, winter sports, and tourism. Little Cottonwood Canyon (LCC) in northern Utah’s Wasatch Range is one of the snowiest locations in the interior western United States and frequently observes orographic snowfall extremes with threats to transportation, structures, and public safety due to storm-related avalanche hazards. Using manual new-snow and liquid precipitation equivalent (LPE) observations, ERA5 reanalyses, and operational radar data, this paper examines the characteristics of cool-season (October–April) 12-h snowfall extremes in upper LCC. The 12-h extremes, defined based on either 95th percentile new snow or LPE, occur for a wide range of crest-level flow directions. The distribution of LPE extremes is bimodal with maxima for south-southwest or north-northwest flow, whereas new-snow extremes occur most frequently during west-northwest flow, which features colder storms with higher snow-to-liquid ratios. Both snowfall and LPE extremes are produced by diverse synoptic patterns, including inland-penetrating or decaying atmospheric rivers from the south through northwest that avoid the southern high Sierra Nevada, frontal systems, post-cold-frontal northwesterly flow, south-southwesterly cold-core flow, and closed low pressure systems. Although often associated with heavy precipitation in other mountainous regions, the linkages between local integrated water vapor transport (IVT) and orographic precipitation extremes in LCC are relatively weak, and during post-cold-frontal northwesterly flow, highly localized and intense snowfall can occur despite low IVT. These results illustrate the remarkable diversity of storm characteristics producing orographic snowfall extremes at this interior continental mountain location. Significance StatementLittle Cottonwood Canyon in northern Utah’s central Wasatch Range frequently experiences extreme snowfall events that pose threats to lives and property. In this study, we illustrate the large diversity of storm characteristics that produce this extreme snowfall. Meteorologists commonly use the amount of water vapor transport in the atmosphere to predict heavy mountain precipitation, but that metric has limited utility in Little Cottonwood Canyon where heavy snowfall can occur with lower values of such transport. Our results can aid weather forecasting in the central Wasatch Range and have implications for understanding precipitation processes in mountain ranges throughout the world.
more »
« less
- Award ID(s):
- 2227071
- PAR ID:
- 10655280
- Publisher / Repository:
- American Meteorological Society
- Date Published:
- Journal Name:
- Monthly Weather Review
- Volume:
- 152
- Issue:
- 4
- ISSN:
- 0027-0644
- Page Range / eLocation ID:
- 945 to 966
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Mid-latitude cyclones approaching coastal mountain ranges experience flow modifications on a variety of scales including orographic lift, blocking, mountain waves, and valley flows. During the 2015-16 Olympic Mountain Experiment (OLYMPEX), a pair of scanning ground radars observed precipitating clouds as they were modified by these orographically-induced flows. The DOW radar, positioned to scan up the windward Quinault Valley, conducted RHI scans during 285 hours of precipitation, 80% of which contained reversed, down-valley flow at lower levels. The existence of down-valley flow in the Quinault Valley was found to be well-correlated with upstream flow blocking and the large-scale sea-level pressure gradient orientated down the valley. Deep down-valley flow occurred in environments with high moist static stability and southerly winds, conditions which are common in pre-frontal sectors of midlatitude cyclones in the coastal Pacific Northwest. Finally, a case study of prolonged down-valley flow in a pre-frontal storm sector was simulated to investigate whether latent heat absorption (cooling) contributed to the event. Three experiments were conducted: a Control simulation and two simulations where the temperature tendencies from melting and evaporation were separately turned off. Results indicated that evaporative cooling had a stronger impact on the event’s down-valley flow than melting, likely because evaporation occurred within the low-level down-valley flow layer. Through these experiments, we show that evaporation helped prolong down-valley flow for several hours past the time of the event’s warm frontal passage.more » « less
-
A remarkable snow climate exists on the Japanese islands of Honshu and Hokkaido near the Sea of Japan. Mean annual snowfall in this “gosetsu chitai” (heavy snow area) exceeds 600 cm (235 in.) in some near-sea-level cities and 1,300 cm (512 in.) in some mountain areas. Much of this snow falls from December to February during the East Asian winter monsoon when frequent cold-air outbreaks occur over the Sea of Japan. The resulting sea-effect precipitation systems share similarities with lake-effect precipitation systems of the Laurentian Great Lakes of North America, but are deeper, are modulated by the regional coastal geometry and topography, and can sometimes feature transversal mode snowbands. Snowfall can maximize in the lowlands or the adjoining mountains depending on the direction and strength of the boundary layer flow. Remarkable infrastructure exists in Japan for public safety, road and sidewalk maintenance, and avalanche mitigation, yet snow-related hazards claim more than 100 lives annually. For winter recreationists, there is no surer bet for deep powder than the mountains of Honshu and Hokkaido near the Sea of Japan in January, but the regional snow climate is vulnerable to global warming, especially in coastal areas. Historically, collaborative studies of sea- and lake-effect precipitation systems involving North American and Japanese scientists have been limited. Significant potential exists to advance our understanding and prediction of sea- and lake-effect precipitation based on studies from the Sea of Japan region and efforts involving meteorologists in North America, Japan, and other sea- and lake-effect regions.more » « less
-
Abstract Cloud seeding of wintertime orographic clouds in the western United States has been attempted to enhance snow production and snowpack. Due to the scarcity of long-term, high-resolution cloud and precipitation observations over complex terrain, few studies have explored variations in orographic snowfall amounts by comparing environmental conditions and cloud characteristics with surface snowfall distribution and quantity. This study analyzes the environmental conditions and cloud characteristics in relation to surface snowfall patterns for the 24 snowfall events observed during the 2017 Seeded and Natural Orographic Wintertime Clouds: The Idaho Experiment (SNOWIE). The investigation aims to understand: 1) What is the influence, if any, of wind, turbulence, and updraft strength on snowfall amounts, rates, and distribution? 2) What is the relationship, if any, of cloud properties and precipitation-forming effectiveness? and 3) Can cloud seeding modify controlling cloud characteristics sufficiently to increase precipitation in otherwise inefficient orographic clouds? The analysis over a 7200-km2observational domain revealed that the accumulated liquid-equivalent snowfall was <0.9 × 107m3and snowfall rates were <0.45 mm h−1for about half of the events. Low snowfall events were characterized by cloud-top temperatures >−20°C, fewer larger droplets, higher liquid water content, and lower ice water content compared to the other events. Cases with minimal background natural snowfall also permitted radar observation of seeding lines. In these cases, cloud seeding was mainly responsible for snowfall. The amount of silver iodide (AgI) released during cloud seeding did not correlate well with snowfall amount and rate. Significance StatementThis study illustrates the complexities of estimating snowfall in wintertime orographic clouds, underscoring the frequent inefficiency of these clouds in generating snowfall—a pivotal concern for regions dependent on snowpack for water resources. By analyzing environmental and cloud characteristics against snowfall patterns during the Seeded and Natural Orographic Wintertime Clouds: The Idaho Experiment (SNOWIE), the research provides critical insights into the complexities of precipitation formation. The findings, particularly on the impact of cloud seeding in enhancing snowfall under specific conditions, contribute significantly to our understanding of weather modification techniques. This research not only is vital for advancing scientific knowledge in understanding wintertime mountain cloud systems but also holds profound implications for water resource management, agriculture, and disaster preparedness in snow-dependent regions.more » « less
-
Abstract Recent studies from the Seeded and Natural Orographic Wintertime Clouds: The Idaho Experiment (SNOWIE) demonstrated definitive radar evidence of seeding signatures in winter orographic clouds during three intensive operation periods (IOPs) where the background signal from natural precipitation was weak and a radar signal attributable to seeding could be identified as traceable seeding lines. Except for the three IOPs where seeding was detected, background natural snowfall was present during seeding operations and no clear seeding signatures were detected. This paper provides a quantitative analysis to assess if orographic cloud seeding effects are detectable using radar when background precipitation is present. We show that a 5-dB change in equivalent reflectivity factorZeis required to stand out against background naturalZevariability. This analysis considers four radar wavelengths, a range of background ice water contents (IWC) from 0.012 to 1.214 g m−3, and additional IWC introduced by seeding ranging from 0.012 to 0.486 g m−3. The upper-limit values of seeded IWC are based on measurements of IWC from the Nevzorov probe employed on the University of Wyoming King Air aircraft during SNOWIE. This analysis implies that seeding effects will be undetectable using radar within background snowfall unless the background IWC is small, and the seeding effects are large. It therefore remains uncertain whether seeding had no effect on cloud microstructure, and therefore produced no signature on radar, or whether seeding did have an effect, but that effect was undetectable against the background reflectivity associated with naturally produced precipitation. Significance StatementOperational glaciogenic seeding programs targeting wintertime orographic clouds are funded by a range of stakeholders to increase snowpack. Glaciogenic seeding signatures have been observed by radar when natural background snowfall is weak but never when heavy background precipitation was present. This analysis quantitatively shows that seeding effects will be undetectable using radar reflectivity under conditions of background snowfall unless the background snowfall is weak, and the seeding effects are large. It therefore remains uncertain whether seeding had no effect on cloud microstructure, and therefore produced no signature on radar, or whether seeding did have an effect, but that effect was undetectable against the background reflectivity associated with naturally produced precipitation. Alternative assessment methods such as trace element analysis in snow, aircraft measurements, precipitation measurements, and modeling should be used to determine the efficacy of orographic cloud seeding when heavy background precipitation is present.more » « less
An official website of the United States government

