Recently, the ubiquity of mobile devices leads to an increasing demand of public network services, e.g., WiFi hot spots. As a part of this trend, modern transportation systems are equipped with public WiFi devices to provide Internet access for passengers as people spend a large amount of time on public transportation in their daily life. However, one of the key issues in public WiFi spots is the privacy concern due to its open access nature. Existing works either studied location privacy risk in human traces or privacy leakage in private networks such as cellular networks based on the data from cellular carriers. To the best of our knowledge, none of these work has been focused on bus WiFi privacy based on large-scale real-world data. In this paper, to explore the privacy risk in bus WiFi systems, we focus on two key questions how likely bus WiFi users can be uniquely re-identified if partial usage information is leaked and how we can protect users from the leaked information. To understand the above questions, we conduct a case study in a large-scale bus WiFi system, which contains 20 million connection records and 78 million location records from 770 thousand bus WiFi users during a two-month period. Technically, we design two models for our uniqueness analyses and protection, i.e., a PB-FIND model to identify the probability a user can be uniquely re-identified from leaked information; a PB-HIDE model to protect users from potentially leaked information. Specifically, we systematically measure the user uniqueness on users' finger traces (i.e., connection URL and domain), foot traces (i.e., locations), and hybrid traces (i.e., both finger and foot traces). Our measurement results reveal (i) 97.8% users can be uniquely re-identified by 4 random domain records of their finger traces and 96.2% users can be uniquely re-identified by 5 random locations on buses; (ii) 98.1% users can be uniquely re-identified by only 2 random records if both their connection records and locations are leaked to attackers. Moreover, the evaluation results show our PB-HIDE algorithm protects more than 95% users from the potentially leaked information by inserting only 1.5% synthetic records in the original dataset to preserve their data utility.
more »
« less
This content will become publicly available on July 1, 2026
"Free WiFi is not ultimately free": Privacy Perceptions of Users in the US regarding City-wide WiFi Services
City-wide free WiFi is one of the most common initiatives of smart city infrastructures. While city-wide free WiFi services are not subject to privacy-focused regulations and appeal to a broader demographic, how users perceive privacy in such services is unknown. This study explores perspectives of users in the United States regarding the privacy practices of such services as well as their expectations. We conducted surveys with 199 participants of US, consisting of those who had used such services (i.e., experienced users, n=99) and those who had not (i.e., potential users, n=100), assessing their satisfaction with the services, perceptions regarding data privacy practices of city-wide free WiFi services, and general expectations of privacy. We identify 14 key findings by analyzing the responses from participants. We found that participants are aware of the data collection and data sharing by the WiFi services and are uncomfortable with both but are still inclined to use the services as the need for WiFi outweighs privacy, as well as because of the significant trust they place in the services due to their non-profit and government-run nature. Our analysis provides actionable takeaways for researchers and practitioners, arguing for long-term privacy gains through a regulatory approach that treats city-wide WiFi as a utility, given the trust consumers place in it, and the overall tendency of consumers to trade-off privacy for WiFi access in this context.
more »
« less
- Award ID(s):
- 2132281
- PAR ID:
- 10655379
- Publisher / Repository:
- Proceedings on Privacy Enhancing Technologies
- Date Published:
- Journal Name:
- Proceedings on Privacy Enhancing Technologies
- Volume:
- 2025
- Issue:
- 3
- ISSN:
- 2299-0984
- Page Range / eLocation ID:
- 527 to 544
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Recent research has shown that in-network observers of WiFi communication (i.e., observers who have joined the WiFi network) can obtain much information regarding the types, user identities, and activities of Internet-of-Things (IoT) devices in the network. What has not been explored is the question of how much information can be inferred by an out-of-network observer who does not have access to the WiFi network. This attack scenario is more realistic and much harder to defend against, thus imposes a real threat to user privacy. In this paper, we investigate privacy leakage derived from an out-of-network traffic eavesdropper on the encrypted WiFi traffic of popular IoT devices. We instrumented a testbed of 12 popular IoT devices and evaluated multiple machine learning methods for fingerprinting and inferring what IoT devices exist in a WiFi network. By only exploiting the WiFi frame header information, we have achieved 95% accuracy in identifying the devices and often their working status. This study demonstrates that information leakage and privacy attack is a real threat for WiFi networks and IoT applications.more » « less
-
It is commonly assumed that “free” mobile apps come at the cost of consumer privacy and that paying for apps could offer consumers protection from behavioral advertising and long-term tracking. This work empirically evaluates the validity of this assumption by comparing the privacy practices of free apps and their paid premium versions, while also gauging consumer expectations surrounding free and paid apps. We use both static and dynamic analysis to examine 5,877 pairs of free Android apps and their paid counterparts for differences in data collection practices and privacy policies between pairs. To understand user expectations for paid apps, we conducted a 998-participant online survey and found that consumers expect paid apps to have better security and privacy behaviors. However, there is no clear evidence that paying for an app will actually guarantee protection from extensive data collection in practice. Given that the free version had at least one thirdparty library or dangerous permission, respectively, we discovered that 45% of the paid versions reused all of the same third-party libraries as their free versions, and 74% of the paid versions had all of the dangerous permissions held by the free app. Likewise, our dynamic analysis revealed that 32% of the paid apps exhibit all of the same data collection and transmission behaviors as their free counterparts. Finally, we found that 40% of apps did not have a privacy policy link in the Google Play Store and that only 3.7% of the pairs that did reflected differences between the free and paid versions.more » « less
-
Understanding and managing data privacy in the digital world can be challenging for sighted users, let alone blind and lowvision (BLV) users. There is limited research on how BLV users, who have special accessibility needs, navigate data privacy, and how potential privacy tools could assist them. We conducted an in-depth qualitative study with 21 US BLV participants to understand their data privacy risk perception and mitigation, as well as their information behaviors related to data privacy. We also explored BLV users’ attitudes towards potential privacy question answering (Q&A) assistants that enable them to better navigate data privacy information. We found that BLV users face heightened security and privacy risks, but their risk mitigation is often insufficient. They do not necessarily seek data privacy information but clearly recognize the benefits of a potential privacy Q&A assistant. They also expect privacy Q&A assistants to possess cross-platform compatibility, support multi-modality, and demonstrate robust functionality. Our study sheds light on BLV users’ expectations when it comes to usability, accessibility, trust and equity issues regarding digital data privacy.more » « less
-
User authentication is a critical process in both corporate and home environments due to the ever-growing security and privacy concerns. With the advancement of smart cities and home environments, the concept of user authentication is evolved with a broader implication by not only preventing unauthorized users from accessing confidential information but also providing the opportunities for customized services corresponding to a specific user. Traditional approaches of user authentication either require specialized device installation or inconvenient wearable sensor attachment. This paper supports the extended concept of user authentication with a device-free approach by leveraging the prevalent WiFi signals made available by IoT devices, such as smart refrigerator, smart TV and thermostat, etc. The proposed system utilizes the WiFi signals to capture unique human physiological and behavioral characteristics inherited from their daily activities, including both walking and stationary ones. Particularly, we extract representative features from channel state information (CSI) measurements of WiFi signals, and develop a deep learning based user authentication scheme to accurately identify each individual user. Extensive experiments in two typical indoor environments, a university office and an apartment, are conducted to demonstrate the effectiveness of the proposed authentication system. In particular, our system can achieve over 94% and 91% authentication accuracy with 11 subjects through walking and stationary activities, respectively.more » « less
An official website of the United States government
