skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Embracing Ambiguity And Subjectivity Using The All-Inclusive Aggregation Rule For Evaluating Multi-Label Speech Emotion Recognition Systems
Speech Emotion Recognition (SER) faces a distinct challenge compared to other speech-related tasks because the annotations will show the subjective emotional perceptions of different annotators. Previous SER studies often view the subjectivity of emotion perception as noise by using the majority rule or plurality rule to obtain the consensus labels. However, these standard approaches overlook the valuable information of labels that do not agree with the consensus and make it easier for the test set. Emotion perception can have co-occurring emotions in realistic conditions, and it is unnecessary to regard the disagreement between raters as noise. To bridge the SER into a multi-label task, we introduced an “all-inclusive rule,” which considers all available data, ratings, and distributional labels as multi-label targets and a complete test set. We demonstrated that models trained with multi-label targets generated by the proposed AR outperform conventional single-label methods across incomplete and complete test sets.  more » « less
Award ID(s):
2016719
PAR ID:
10655462
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
IEEE
Date Published:
Page Range / eLocation ID:
502 to 509
Format(s):
Medium: X
Location:
Macao, China
Sponsoring Org:
National Science Foundation
More Like this
  1. When selecting test data for subjective tasks, most studies define ground truth labels using aggregation methods such as the majority or plurality rules. These methods discard data points without consensus, making the test set easier than practical tasks where a prediction is needed for each sample. However, the discarded data points often express ambiguous cues that elicit coexisting traits perceived by annotators. This paper addresses the importance of considering all the annotations and samples in the data, highlighting that only showing the model’s performance on an incomplete test set selected by using the majority or plurality rules can lead to bias in the models’ performances. We focus on speech-emotion recognition (SER) tasks. We observe that traditional aggregation rules have a data loss ratio ranging from 5.63% to 89.17%. From this observation, we propose a flexible method named the all-inclusive aggregation rule to evaluate SER systems on the complete test data. We contrast traditional single-label formulations with a multi-label formulation to consider the coexistence of emotions. We show that training an SER model with the data selected by the all-inclusive aggregation rule shows consistently higher macro-F1 scores when tested in the entire test set, including ambiguous samples without agreement. 
    more » « less
  2. The uncertainty in modeling emotions makes speech emotion recognition (SER) systems less reliable. An intuitive way to increase trust in SER is to reject predictions with low confidence. This approach assumes that an SER system is well calibrated, where highly confident predictions are often right and low confident predictions are often wrong. Hence, it is desirable to calibrate the confidence of SER classifiers. We evaluate the reliability of SER systems by exploring the relationship between confidence and accuracy, using the expected calibration error (ECE) metric. We develop a multi-label variant of the post-hoc temperature scaling (TS) method to calibrate SER systems, while preserving their accuracy. The best method combines an emotion co-occurrence weight penalty function, a class-balanced objective function, and the proposed multi-label TS calibration method. The experiments show the effectiveness of our developed multi-label calibration method in terms of ac- curacy and ECE. 
    more » « less
  3. Previous studies on speech emotion recognition (SER) with categorical emotions have often formulated the task as a single-label classification problem, where the emotions are considered orthogonal to each other. However, previous studies have indicated that emotions can co-occur, especially for more ambiguous emotional sentences (e.g., a mixture of happiness and sur- prise). Some studies have regarded SER problems as a multi-label task, predicting multiple emotional classes. However, this formulation does not leverage the relation between emotions during training, since emotions are assumed to be independent. This study explores the idea that emotional classes are not necessarily independent and its implications on training SER models. In particular, we calculate the frequency of co-occurring emotions from perceptual evaluations in the train set to generate a matrix with class-dependent penalties, punishing more mistakes between distant emotional classes. We integrate the penalization matrix into three existing label-learning approaches (hard-label, multi-label, and distribution-label learn- ing) using the proposed modified loss. We train SER models using the penalty loss and commonly used cost functions for SER tasks. The evaluation of our proposed penalization matrix on the MSP-Podcast corpus shows important relative improvements in macro F1-score for hard-label learning (17.12%), multi-label learning (12.79%), and distribution-label learning (25.8%). 
    more » « less
  4. na (Ed.)
    In the field of affective computing, emotional annotations are highly important for both the recognition and synthesis of human emotions. Researchers must ensure that these emotional labels are adequate for modeling general human perception. An unavoidable part of obtaining such labels is that human annotators are exposed to known and unknown stimuli before and during the annotation process that can affect their perception. Emotional stimuli cause an affective priming effect, which is a pre-conscious phenomenon in which previous emotional stimuli affect the emotional perception of a current target stimulus. In this paper, we use sequences of emotional annotations during a perceptual evaluation to study the effect of affective priming on emotional ratings of speech. We observe that previous emotional sentences with extreme emotional content push annotations of current samples to the same extreme. We create a sentence-level bias metric to study the effect of affective priming on speech emotion recognition (SER) modeling. The metric is used to identify subsets in the database with more affective priming bias intentionally creating biased datasets. We train and test SER models using the full and biased datasets. Our results show that although the biased datasets have low inter-evaluator agreements, SER models for arousal and dominance trained with those datasets perform the best. For valence, the models trained with the less-biased datasets perform the best. 
    more » « less
  5. Recent studies have demonstrated the effectiveness of fine-tuning self-supervised speech representation models for speech emotion recognition (SER). However, applying SER in real-world environments remains challenging due to pervasive noise. Relying on low-accuracy predictions due to noisy speech can undermine the user’s trust. This paper proposes a unified self-supervised speech representation framework for enhanced speech emotion recognition designed to increase noise robustness in SER while generating enhanced speech. Our framework integrates speech enhancement (SE) and SER tasks, leveraging shared self-supervised learning (SSL)-derived features to improve emotion classification performance in noisy environments. This strategy encourages the SE module to enhance discriminative information for SER tasks. Additionally, we introduce a cascade unfrozen training strategy, where the SSL model is gradually unfrozen and fine-tuned alongside the SE and SER heads, ensuring training stability and preserving the generalizability of SSL representations. This approach demonstrates improvements in SER performance under unseen noisy conditions without compromising SE quality. When tested at a 0 dB signal-to-noise ratio (SNR) level, our proposed method outperforms the original baseline by 3.7% in F1-Macro and 2.7% in F1-Micro scores, where the differences are statistically significant. 
    more » « less