skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on September 1, 2026

Title: Bar-spiral interaction induces radial migration and star formation bursts
Context.Central bars and spirals are known to impact significantly the evolution of their host galaxies, both in terms of dynamics and star formation. Their typically different pattern speeds cause them to regularly overlap, which induces fluctuations in bar parameters. Aims.In this paper, we analyze both numerical simulations of disk galaxies and observational data to study the effect of bar-spiral physical overlap on stellar radial migration and star formation in the bar vicinity, as a function of time and galactic azimuth. Methods.We studied three different numerical models, two of which are in a cosmological context, alongside APOGEE DR17 data and the WISE catalog of Galactic HII regions. Results.We find that periodic boosts in stellar radial migration occur when the bar and spiral structures overlap. This mechanism causes net inward migration along the bar leading side, while stars along the bar trailing side and minor axis are shifted outward. The signature of bar-spiral-induced migration is seen between the bar inner Lindbald resonance and well outside its corotation, beyond which other drivers take over. We also find that, in agreement with simulations, APOGEE DR17 stars born at the bar vicinity (which are mostly metal rich) can migrate out to the solar radius while remaining on cold orbits. For the Milky Way, 13% of stars in the solar vicinity with an eccentricity <0.5 were born inside the bar, compared to 5–20% in the simulations. Bar-spiral reconnections also result in periodic starbursts at the bar ends with an enhancement of up to a factor of 4, depending on the strength of the spiral structure. Similarly to the migration bursts, these do not always happen simultaneously at the two sides of the bar, which hints at the importance of odd spiral modes. Data from the WISE catalog suggest this phenomenon is also relevant in our own Galaxy.  more » « less
Award ID(s):
2202340
PAR ID:
10655714
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Astronomy & Astrophysics
Date Published:
Journal Name:
Astronomy & Astrophysics
Volume:
701
ISSN:
0004-6361
Page Range / eLocation ID:
A88
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT We introduce the Sloan Digital Sky Survey (SDSS)/ Apache Point Observatory Galactic Evolution Experiment (APOGEE) value-added catalogue of Galactic globular cluster (GC) stars. The catalogue is the result of a critical search of the APOGEE Data Release 17 (DR17) catalogue for candidate members of all known Galactic GCs. Candidate members are assigned to various GCs on the basis of position in the sky, proper motion, and radial velocity. The catalogue contains a total of 7737 entries for 6422 unique stars associated with 72 Galactic GCs. Full APOGEE DR17 information is provided, including radial velocities and abundances for up to 20 elements. Membership probabilities estimated on the basis of precision radial velocities are made available. Comparisons with chemical compositions derived from the GALactic Archaeology with HERMES (GALAH) survey, as well as optical values from the literature, show good agreement. This catalogue represents a significant increase in the public data base of GC star chemical compositions and kinematics, providing a massive homogeneous data set that will enable a variety of studies. The catalogue in fits format is available for public download from the SDSS-IV DR17 value-added catalogue website. 
    more » « less
  2. Abstract We show the variations of the COJ= 2–1/1–0 line ratio (R21/10) across the barred spiral galaxy M83, using the 46 pc resolution data from the Atacama Large Millimeter/submillimeter Array. TheR21/10map clearly evidences the systematic large-scale variations as a function of galactic structures. Azimuthally, it starts from lowR21/10≲ 0.7 in the interarm regions and becomes high ≳0.7 in the bar and spiral arms, suggesting that the density and/or kinetic temperature of molecular gas increase by about a factor of 2–3. This evolution is seen even in the parts of spiral arms without star formation, andR21/10is often elevated even higher to ∼0.8–1.0 when Hiiregions exist in the vicinity. Radially,R21/10starts very high ≳1.0 at the galactic center, remains low ≲0.7 in the bar region, increases to ≳0.7 around the bar end, and again decreases to ≲0.7 in the rest of disk where the spiral arms dominate. The evolutionary sequence is synchronized with galactic rotation, and therefore, it is determined largely by the galactic structures and dynamics and is governed by the galactic rotation timescales. TheR21/10map also shows that the influence of stellar feedback is localized and limited. Massive, large, and non-star-forming molecular structures have lowR21/10, which also suggests that the bulk molecular gas in the disk is not regulated by stellar feedback, but more likely by galactic structures and dynamics. These results are consistent with suggestions by the earlier studies of the Milky Way and other barred spiral galaxies, and thus, are likely general among barred spiral galaxies in the local Universe. 
    more » « less
  3. ABSTRACT Stellar radial migration plays an important role in reshaping a galaxy’s structure and the radial distribution of stellar population properties. In this work, we revisit reported observational evidence for radial migration and quantify its strength using the age–[Fe/H] distribution of stars across the Milky Way with APOGEE data. We find a broken age–[Fe/H] relation in the Galactic disc at r > 6 kpc, with a more pronounced break at larger radii. To quantify the strength of radial migration, we assume stars born at each radius have a unique age and metallicity, and then decompose the metallicity distribution function (MDF) of mono-age young populations into different Gaussian components that originated from various birth radii at rbirth < 13 kpc. We find that, at ages of 2 and 3 Gyr, roughly half the stars were formed within 1 kpc of their present radius, and very few stars (<5 per cent) were formed more than 4 kpc away from their present radius. These results suggest limited short-distance radial migration and inefficient long-distance migration in the Milky Way during the last 3 Gyr. In the very outer disc beyond 15 kpc, the observed age–[Fe/H] distribution is consistent with the prediction of pure radial migration from smaller radii, suggesting a migration origin of the very outer disc. We also estimate intrinsic metallicity gradients at ages of 2 and 3 Gyr of −0.061 and −0.063 dex kpc−1, respectively. 
    more » « less
  4. ABSTRACT We present a novel method for constraining the length of the Galactic bar using 6D phase-space information to directly integrate orbits. We define a pseudo-length for the Galactic bar, named RFreq, based on the maximal extent of trapped bar orbits. We find the RFreq measured from orbits is consistent with the RFreq of the assumed potential only when the length of the bar and pattern speed of said potential is similar to the model from which the initial phase-space coordinates of the orbits are derived. Therefore, one can measure the model’s or the Milky Way’s bar length from 6D phase-space coordinates by determining which assumed potential leads to a self-consistent measured RFreq. When we apply this method to ≈210 000 stars in APOGEE DR17 and Gaia eDR3 data, we find a consistent result only for potential models with a dynamical bar length of ≈3.5 kpc. We find the Milky Way’s trapped bar orbits extend out to only ≈3.5 kpc, but there is also an overdensity of stars at the end of the bar out to 4.8 kpc which could be related to an attached spiral arm. We also find that the measured orbital structure of the bar is strongly dependent on the properties of the assumed potential. 
    more » « less
  5. Abstract The Galactic bulge is critical to our understanding of the Milky Way. However, due to the lack of reliable stellar distances, the structure and kinematics of the bulge/bar beyond the Galactic center have remained largely unexplored. Here, we present a method to measure distances of luminous red giants using a period–amplitude–luminosity relation anchored to the Large Magellanic Cloud, with random uncertainties of 10%–15% and systematic errors below 1%–2%. We apply this method to data from the Optical Gravitational Lensing Experiment to measure distances to 190,302 stars in the Galactic bulge and beyond out to 20 kpc. Using this sample, we measure a distance to the Galactic center ofR0= 8108 ± 106stat± 93syspc, consistent with direct measurements of stars orbiting Sgr A*. We cross-match our distance catalog with Gaia DR3 and use the subset of 39,566 overlapping stars to provide the first constraints on the Milky Way’s velocity field (VR,Vϕ,Vz) beyond the Galactic center. We show that theVRquadrupole from the bar’s near side is reflected with respect to the Galactic center, indicating that the bar is bisymmetric and aligned with the inner disk. We also find that the vertical heightVZmap has no major structure in the region of the Galactic bulge, which is inconsistent with a current episode of bar buckling. Finally, we demonstrate withN-body simulations that distance uncertainty plays a factor in the alignment of the major and kinematic axes of the bar, necessitating caution when interpreting results for distant stars. 
    more » « less