skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on October 1, 2026

Title: A Novel Framework to Project the Permafrost Fate With Explicit Quantification of Soil Property and Future Climate Uncertainties
Abstract This study develops a novel general framework to project the permafrost fate with rigorous uncertainty quantification to assess dominant sources. Borehole temperature records from three sites in the Russian western Arctic are used to constrain the uncertainty of a high‐fidelity freeze‐thaw model. Projections from 9 Global Climate Models (GCM) are stochastically downscaled to generate future trajectories of surface ground heat flux. Under the two emission scenarios SSP2‐4.5 and SSP5‐8.5, the projected average thawing depths by 2100 vary from 0.4 to 14.4 m or 2.1 to 17.7 m, and the increase in the top 10 m average temperature from 2015 to 2100 is 1.2–2.7°C or 1.9–3.0°C. The results show that the freeze‐thaw model uncertainty can sometimes dominate over that of GCM outputs, calling for site‐specific information to improve model accuracy. The framework is applicable for understanding permafrost degradation and related uncertainties at larger scales.  more » « less
Award ID(s):
2126797 2126793 2126792 1724786
PAR ID:
10655770
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Journal of Geophysical Research: Earth Surface
Volume:
130
Issue:
10
ISSN:
2169-9003
Page Range / eLocation ID:
e2024JF008168
Format(s):
Medium: X Size: 4 Other: pdf
Size(s):
4
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Northern circumpolar permafrost thaw affects global carbon cycling, as large amounts of stored soil carbon becomes accessible to microbial breakdown under a warming climate. The magnitude of carbon release is linked to the extent of permafrost thaw, which is locally variable and controlled by soil thermodynamics. Soil thermodynamic properties, such as thermal diffusivity, govern the reactivity of the soil‐atmosphere thermal gradient, and are controlled by soil composition and drainage. In order to project permafrost thaw for an Alaskan tundra experimental site, we used seven years of site data to calibrate a soil thermodynamic model using a data assimilation technique. The model reproduced seasonal and interannual temperature dynamics for shallow (5–40 cm) and deep soil layers (2–4 m), and simulations of seasonal thaw depth closely matched observed data. The model was then used to project permafrost thaw at the site to the year 2100 using climate forcing data for three future climate scenarios (RCP 4.5, 6.0, and 8.5). Minimal permafrost thawing occurred until mean annual air temperatures rose above the freezing point, after which we measured over a 1 m increase in thaw depth for every 1 °C rise in mean annual air temperature. Under no projected warming scenario was permafrost remaining in the upper 3 m of soil by 2100. We demonstrated an effective data assimilation method that optimizes parameterization of a soil thermodynamic model. The sensitivity of local permafrost to climate warming illustrates the vulnerability of sub‐Arctic tundra ecosystems to significant and rapid soil thawing. 
    more » « less
  2. Abstract Climate warming in high‐latitude regions is thawing carbon‐rich permafrost soils, which can release carbon to the atmosphere and enhance climate warming. Using a coupled model of long‐term peatland dynamics (Holocene Peat Model, HPM‐Arctic), we quantify the potential loss of carbon with future climate warming for six sites with differing climates and permafrost histories in Northwestern Canada. We compared the net carbon balance at 2100 CE resulting from new productivity and the decomposition of active layer and newly thawed permafrost peats under RCP8.5 as a high‐end constraint. Modeled net carbon losses ranged from −3.0 kg C m−2(net loss) to +0.1 kg C m−2(net gain) between 2015 and 2100. Losses of newly thawed permafrost peat comprised 0.2%–25% (median: 1.6%) of “old” C loss, which were related to the residence time of peat in the active layer before being incorporated into the permafrost, peat temperature, and presence of permafrost. The largest C loss was from the permafrost‐free site, not from permafrost sites. C losses were greatest from depths of 0.2–1.0 m. New C added to the profile through net primary productivity between 2015 and 2100 offset ∼40% to >100% of old C losses across the sites. Differences between modeled active layer deepening and flooding following permafrost thaw resulted in very small differences in net C loss by 2100, illustrating the important role of present‐day conditions and permafrost aggradation history in controlling net C loss. 
    more » « less
  3. Abstract Improved modeling of permafrost active layer freeze‐thaw plays a crucial role in understanding the response of the Arctic ecosystem to the accelerating warming trend in the region over the past decades. However, modeling the dynamics of the active layer at diurnal time scale remains challenging using the traditional models of freeze‐thaw processes. In this study, a physically based analytical model is formulated to simulate the thaw depth of the active layer under changing boundary conditions of soil heat flux. Conservation of energy for the active layer leads to a nonlinear integral equation of the thaw depth using a temperature profile approximated from the analytical solution of the heat transfer equation forced by ground heat flux. Temporally variable ground heat flux is estimated using non‐gradient models when field observations are not available. Validation of the proposed model conducted against field data obtained from three Arctic forest and tundra sites demonstrates that the model is able to simulate both thaw depth and soil temperature profiles accurately. The model has the potential to estimate regional variability of the thaw depth for permafrost related applications. 
    more » « less
  4. Abstract Surface effects of sea‐level rise (SLR) in permafrost regions are obvious where increasingly iceless seas erode and inundate coastlines. SLR also drives saltwater intrusion, but subsurface impacts on permafrost‐bound coastlines are unseen and unclear due to limited field data and the absence of models that include salinity‐dependent groundwater flow with solute exclusion and freeze‐thaw dynamics. Here, we develop a numerical model with the aforementioned processes to investigate climate change impacts on coastal permafrost. We find that SLR drives lateral permafrost thaw due to depressed freezing temperatures from saltwater intrusion, whereas warming drives top‐down thaw. Under high SLR and low warming scenarios, thaw driven by SLR exceeds warming‐driven thaw when normalized to the influenced surface area. Results highlight an overlooked feedback mechanism between SLR and permafrost thaw with potential implications for coastal infrastructure, ocean‐aquifer interactions, and carbon mobilization. 
    more » « less
  5. Abstract Groundwater discharge is an important mechanism through which fresh water and associated solutes are delivered to the ocean. Permafrost environments have traditionally been considered hydrogeologically inactive, yet with accelerated climate change and permafrost thaw, groundwater flow paths are activating and opening subsurface connections to the coastal zone. While warming has the potential to increase land-sea connectivity, sea-level change has the potential to alter land-sea hydraulic gradients and enhance coastal permafrost thaw, resulting in a complex interplay that will govern future groundwater discharge dynamics along Arctic coastlines. Here, we use a recently developed permafrost hydrological model that simulates variable-density groundwater flow and salinity-dependent freeze-thaw to investigate the impacts of sea-level change and land and ocean warming on the magnitude, spatial distribution, and salinity of coastal groundwater discharge. Results project both an increase and decrease in discharge with climate change depending on the rate of warming and sea-level change. Under high warming and low sea-level rise scenarios, results show up to a 58% increase in coastal groundwater discharge by 2100 due to the formation of a supra-permafrost aquifer that enhances freshwater delivery to the coastal zone. With higher rates of sea-level rise, the increase in discharge due to warming is reduced to 21% as sea-level rise decreased land-sea hydraulic gradients. Under lower warming scenarios for which supra-permafrost groundwater flow was not established, discharge decreased by up to 26% between 1980 and 2100 for high sea-level rise scenarios and increased only 8% under low sea-level rise scenarios. Thus, regions with higher warming rates and lower rates of sea-level change (e.g. northern Nunavut, Canada) will experience a greater increase in discharge than regions with lower warming rates and higher rates of sea-level change. The magnitude, location and salinity of discharge have important implications for ecosystem function, water quality, and carbon dynamics in coastal zones. 
    more » « less