skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1724786

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract This study develops a novel general framework to project the permafrost fate with rigorous uncertainty quantification to assess dominant sources. Borehole temperature records from three sites in the Russian western Arctic are used to constrain the uncertainty of a high‐fidelity freeze‐thaw model. Projections from 9 Global Climate Models (GCM) are stochastically downscaled to generate future trajectories of surface ground heat flux. Under the two emission scenarios SSP2‐4.5 and SSP5‐8.5, the projected average thawing depths by 2100 vary from 0.4 to 14.4 m or 2.1 to 17.7 m, and the increase in the top 10 m average temperature from 2015 to 2100 is 1.2–2.7°C or 1.9–3.0°C. The results show that the freeze‐thaw model uncertainty can sometimes dominate over that of GCM outputs, calling for site‐specific information to improve model accuracy. The framework is applicable for understanding permafrost degradation and related uncertainties at larger scales. 
    more » « less
    Free, publicly-accessible full text available October 1, 2026
  2. Abstract Nenets reindeer pastoralists of Yamal in the Russian Arctic, successfully deal with rapidly changing climate and natural gas industrialization. We present results from our long-term ethnographic study (2001–present) on the adaptive strategies that Nenets nomadic households have employed over time, their tradeoffs, inherent risks, and social implications of these strategies. While some strategies limit the adaptive flexibility of herding, they simultaneously enable agency that keeps Nenets households on the land—critical for maintaining their nomadism. Rapid climate change in the Arctic, which could lead to increased icing of pastures, makes reindeer herding more vulnerable. We examine meteorological data from Yamal to better understand the climatic trends challenging reindeer nomadism. Our analysis is relevant for policymakers through understanding Nenets adaptation and interactions with ecological processes and institutions. 
    more » « less
  3. Abstract Ground heat flux (G0) is a key component of the land‐surface energy balance of high‐latitude regions. Despite its crucial role in controlling permafrost degradation due to global warming,G0is sparsely measured and not well represented in the outputs of global scale model simulation. In this study, an analytical heat transfer model is tested to reconstructG0across seasons using soil temperature series from field measurements, Global Climate Model, and climate reanalysis outputs. The probability density functions of ground heat flux and of model parameters are inferred using availableG0data (measured or modeled) for snow‐free period as a reference. When observedG0is not available, a numerical model is applied using estimates of surface heat flux (dependent on parameters) as the top boundary condition. These estimates (and thus the corresponding parameters) are verified by comparing the distributions of simulated and measured soil temperature at several depths. Aided by state‐of‐the‐art uncertainty quantification methods, the developedG0reconstruction approach provides novel means for assessing the probabilistic structure of the ground heat flux for regional permafrost change studies. 
    more » « less
  4. Abstract Previous studies discovered a spatially heterogeneous expansion of Siberian larch into the tundra of the Polar Urals (Russia). This study reveals that the spatial pattern of encroachment of tree stands is related to environmental factors including topography and snow cover. Structural and allometric characteristics of trees, along with terrain elevation and snow depth were collected along a transect 860 m long and 80 m wide. Terrain curvature indices, as representative properties, were derived across a range of scales in order to characterize microtopography. A density-based clustering method was used here to analyze the spatial and temporal patterns of tree stems distribution. Results of the topographic analysis suggest that trees tend to cluster in areas with convex surfaces. The clustering analysis also indicates that the patterns of tree locations are linked to snow distribution. Records from the earliest campaign in 1960 show that trees lived mainly at the middle and bottom of the transect across the areas of high snow depth. As trees expanded uphill following a warming climate trend in recent decades, the high snow depth areas also shifted upward creating favorable conditions for recent tree growth at locations that were previously covered with heavy snow. The identified landscape signatures of increasing tall vegetation, and the effects of microtopography and snow may facilitate the understanding of treeline dynamics at larger scales. 
    more » « less
  5. Abstract Global climate change substantially influences vegetation spring phenology, that is, green‐up date (GUD), in the northern permafrost region. Changes in GUD regulate ecosystem carbon uptake, further feeding back to local and regional climate systems. Extant studies mainly focused on the direct effects of climate factors, such as temperature, precipitation, and insolation; however, the responses of GUD to permafrost degradation caused by warming (i.e., indirect effects) remain elusive yet. In this study, we examined the impacts of permafrost degradation on GUD by analyzing the long‐term trend of satellite‐based GUD in relation to permafrost degradation measured by the start of thaw (SOT) and active layer thickness (ALT). We found significant trends of advancing GUD, SOT, and thickening ALT (p < 0.05), with a spatially averaged slope of −2.1 days decade−1, −4.1 days decade−1, and +1.1 cm decade−1, respectively. Using partial correlation analyses, we found more than half of the regions with significantly negative correlations between spring temperature and GUD became nonsignificant after considering permafrost degradation. GUD exhibits dominant‐positive (37.6% vs. 0.6%) and dominant‐negative (1.8% vs. 35.1%) responses to SOT and ALT, respectively. Earlier SOT and thicker ALT would enhance soil water availability, thus alleviating water stress for vegetation green‐up. Based on sensitivity analyses, permafrost degradation was the dominant factor controlling GUD variations in 41.7% of the regions, whereas only 19.6% of the regions were dominated by other climatic factors (i.e., temperature, precipitation, and insolation). Our results indicate that GUDs were more sensitive to permafrost degradation than direct climate change in spring among different vegetation types, especially in high latitudes. This study reveals the significant impacts of permafrost degradation on vegetation GUD and highlights the importance of permafrost status in better understanding spring phenological responses to future climate change. 
    more » « less
  6. Accurate measurement of net radiation in the high-latitude Arctic regions is challenging since rain and snow events often introduce substantial measurement errors. To reduce the precipitation-induced measurement errors of downward radiation, customized data-driven methods are developed to reconstruct downward radiative fluxes from the biased radiation measurements. This study uses four years of field data across ten plots covered with forest, trees, and tundra in the Polar Urals from July 2018 to July 2022. Rain and snow on the radiometers absorb and block shortwave radiation and emit longwave radiation, leading to underestimation of downward shortwave and overestimation of downward longwave radiation. Snow causes more errors than rain. Seasonal variation of reconstructed net radiation for three dominant vegetation types indicates that their differences are most pronounced in April and least in September. Furthermore, forest and tree plots consistently exhibit higher magnitudes of net radiation and longer seasons of positive net radiation than tundra plots. This study advances methodologies for reconstructing corrupted net radiation data in the Arctic and offers insights into the variability of net radiation patterns within the forest-tundra ecotone. 
    more » « less
    Free, publicly-accessible full text available November 1, 2026
  7. Timberline marks the transitions from continuous forests to sparse forests and tundra landscapes. As the spatial distribution and dynamics of timberline are closely associated with regional energy and carbon balance, mapping timberline is important to a wide range of environmental and ecological studies. However, current timberline delineation approaches remain under-developed. We proposed an automatic timberline delineation method based on a seeded region-growing segmentation technique and satellite-derived products of tree fractional cover. We applied our approach to the West Siberian Plain and Alaska treeline regions as defined by the Circumpolar Arctic Vegetation Map. The results demonstrate the effectiveness of the proposed method for the accurate delineation of the timberlines that spatially align well with very-high-resolution satellite images. Based on the delineated timberlines, we find regional-scale tree encroachment to be not as substantial as previously reported. The proposed approach can be applied to understanding climate-induced forest responses and inform forest management practices. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  8. ArcticDEM provides the public with an unprecedented opportunity to access very high-spatial resolution digital elevation models (DEMs) covering the pan-Arctic surfaces. As it is generated from stereo-pairs of optical satellite imagery, ArcticDEM represents a mixture of a digital surface model (DSM) over a non-ground areas and digital terrain model (DTM) at bare grounds. Reconstructing DTM from ArcticDEM is thus needed in studies requiring bare ground elevation, such as modeling hydrological processes, tracking surface change dynamics, and estimating vegetation canopy height and associated forest attributes. Here we proposed an automated approach for estimating DTM from ArcticDEM in two steps: (1) identifying ground pixels from WorldView-2 imagery using a Gaussian mixture model (GMM) with local refinement by morphological operation, and (2) generating a continuous DTM surface using ArcticDEMs at ground locations and spatial interpolation methods (ordinary kriging (OK) and natural neighbor (NN)). We evaluated our method at three forested study sites characterized by different canopy cover and topographic conditions in Livengood, Alaska, where airborne lidar data is available for validation. Our results demonstrate that (1) the proposed ground identification method can effectively identify ground pixels with much lower root mean square errors (RMSEs) (<0.35 m) to the reference data than the comparative state-of-the-art approaches; (2) NN performs more robustly in DTM interpolation than OK; (3) the DTMs generated from NN interpolation with GMM-based ground masks decrease the RMSEs of ArcticDEM to 0.648 m, 1.677 m, and 0.521 m for Site-1, Site-2, and Site-3, respectively. This study provides a viable means of deriving high-resolution DTM from ArcticDEM that will be of great value to studies focusing on the Arctic ecosystems, forest change dynamics, and earth surface processes. 
    more » « less