skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 1, 2026

Title: Double-network-inspired mechanical metamaterials
Mechanical metamaterials are renowned for their ability to achieve high stiffness and strength at low densities, often at the expense of low ductility and stretchability-a persistent trade-off in materials. In contrast, materials such as double-network hydrogels feature interpenetrating compliant and stiff polymer networks, and exhibit unprecedented combinations of high stiffness and stretchability, resulting in exceptional toughness. Here, we present double-network-inspired (DNI) metamaterials by integrating monolithic truss (stiff) and woven (compliant) components into a metamaterial architecture, which achieve a tenfold increase in stiffness and stretchability compared to their pure woven and truss counterparts, respectively. Nonlinear computational mechanics models elucidate that enhanced energy dissipation in these DNI metamaterials stems from increased frictional dissipation due to entanglements between the two networks. Through introduction of internal defects, which typically degrade mechanical properties, we demonstrate an opposite effect of a threefold increase in energy dissipation for these metamaterials via failure delocalization. This work opens avenues for developing new classes of metamaterials in a high-compliance regime inspired by polymer network topologies.  more » « less
Award ID(s):
2418432 2142460
PAR ID:
10655856
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Springer
Date Published:
Journal Name:
Nature Materials
Volume:
24
Issue:
6
ISSN:
1476-1122
Page Range / eLocation ID:
945 to 954
Subject(s) / Keyword(s):
metamaterials entanglement woven lattices double networks
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Smart materials with coupled optical and mechanical responsiveness to external stimuli, as inspired by nature, are of interest for the biomimetic design of the next generation of soft machines and wearable electronics. A tough polymer that shows adaptable and switchable mechanical and fluorescent properties is designed using a fluorescent lanthanide, europium (Eu). The dynamic Eu‐iminodiacetate (IDA) coordination is incorporated to build up the physical cross‐linking network in the polymer film consisting of two interpenetrated networks. Reversible disruption and reformation of Eu‐IDA complexation endow high stiffness, toughness, and stretchability to the polymer elastomer through energy dissipation of dynamic coordination. Water that binds to Eu3+ions shows an interesting impact simultaneously on the mechanical strength and fluorescent emission of the Eu‐containing polymer elastomer. The mechanical states of the polymer, along with the visually optical response through the emission color change of the polymer film, are reversibly switchable with moisture as a stimulus. The coupled response in the mechanical strength and emissive color in one single material is potentially applicable for smart materials requiring an optical readout of their mechanical properties. 
    more » « less
  2. Stretchable materials that can sustain a large deformation are in high demand, because they find broad applications ranging from stretchable energy storage devices to tunable noise and vibration devices. One main challenge is creating strain‐releasing mechanisms from inherently brittle materials. This work explores a new approach to designing stretchable metamaterials, using a kerfing pattern inspired by the ancient Greek Key configuration. The kerfing architecture allows for substantial in‐plane elongation. In‐plane tensile experiments show an ≈8‐times increase in stretchability when the kerfing width is enlarged four times. With higher‐order fractal patterns, the fractal lattice exhibits a stretchability of up to ≈520%, far beyond the inherent deformability of the brittle constituent. Moreover, this design also enables the tunability of various mechanical properties, including stiffness, strength, toughness, and Poisson's ratio. Ashby‐type plots are presented, revealing the relationships between stretchability and other mechanical properties to aid in the design and fabrication of advanced engineering materials. To demonstrate a vital application of the achieved stretchability, elastic wave propagation in the proposed kerfing metamaterials is studied. Simulations indicate that multiple broad phononic bandgaps arise in these structures as the fractal order increases. These bandgaps prove to be adjustable not only through the fractal lattice geometry but also by means of applied mechanical loading. This investigation highlights the potential of fractal‐based layouts as a promising avenue for designing cutting‐edge stretchable metamaterials with customizable mechanical properties and functionalities. 
    more » « less
  3. Compliant sutures surrounded by stiff matrices are present in biological armors and carapaces, providing enhanced mechanical performance. Understanding the mechanisms through which these sutured composites achieve outstanding properties is key to developing engineering materials with improved strength and toughness. This article studies the impact of suture geometry and load direction on the performance of suture joints using a two-stage reactive polymer resin that enables facile photopatterning of mechanical heterogeneity within a single polymer network. Compliant sinusoidal sutures with varying geometries are photopatterned into stiff matrices, generating a modulus contrast of two orders of magnitude. Empirical relationships are developed connecting suture wavelength and amplitude to composite performance under parallel and perpendicular loading conditions. Results indicate that a greater suture interdigitation broadly improves composite performance when loading is applied perpendicular to suture joints, but has deleterious effects when loading is applied parallel to the joint. Investigations into the failure mechanisms under perpendicular loading highlight the interplay between suture geometry and crack growth stability after damage initiation occurs. Our findings could enable a framework for engineering composites and bio-inspired structures in the future. 
    more » « less
  4. Abstract Understanding psychology is an important task in modern society which helps predict human behavior and provide feedback accordingly. Monitoring of weak psychological and emotional changes requires bioelectronic devices to be stretchable and compliant for unobtrusive and high‐fidelity signal acquisition. Thin conductive polymer film is regarded as an ideal interface; however, it is very challenging to simultaneously balance mechanical robustness and opto‐electrical property. Here, a 40 nm‐thick film based on photolithographic double‐network conductive polymer mediated by graphene layer is reported, which concurrently enables stretchability, conductivity, and conformability. Photolithographic polymer and graphene endow the film photopatternability, enhance stress dissipation capability, as well as improve opto‐electrical conductivity (4458 S cm−1@>90% transparency) through molecular rearrangement by π–π interaction, electrostatic interaction, and hydrogen bonding. The film is further applied onto corrugated facial skin, the subtle electromyogram is monitored, and machine learning algorithm is performed to understand complex emotions, indicating the outstanding ability for stretchable and compliant bioelectronics. 
    more » « less
  5. Mechanical deformation of polymer networks causes molecular-level motion and bond scission that ultimately lead to material failure. Mitigating this strain-induced loss in mechanical integrity is a significant challenge, especially in the development of active and shape-memory materials. We report the additive manufacturing of mechanical metamaterials made with a protein-based polymer that undergo a unique stiffening and strengthening behavior after shape recovery cycles. We utilize a bovine serum albumin-based polymer and show that cyclic tension and recovery experiments on the neat resin lead to a ~60% increase in the strength and stiffness of the material. This is attributed to the release of stored length in the protein mechanophores during plastic deformation that is preserved after the recovery cycle, thereby leading to a “strain learning” behavior. We perform compression experiments on three-dimensionally printed lattice metamaterials made from this protein-based polymer and find that, in certain lattices, the strain learning effect is not only preserved but amplified, causing up to a 2.5× increase in the stiffness of the recovered metamaterial. These protein–polymer strain learning metamaterials offer a unique platform for materials that can autonomously remodel after being deformed, mimicking the remodeling processes that occur in natural materials. 
    more » « less