skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Elucidation of Ce/Zr ratio effects on the physical properties and catalytic performance of CuOx/CeyZr1−yO2 catalysts
Although cerium oxide (CeO2) is widely used as a catalyst support, its limited defect sites and surface oxygen vacancy/mobility should be improved. The incorporation of zirconium (Zr) in the cerium (Ce) lattice is shown to increase the number of oxygen vacancies and improve catalytic activity. Using a fixed surface density (SD) of copper (∼2.3 Cu atoms per nm2) as a surface species, the role of the support (CeyZr1−yO2 (y = 1.0, 0.9, 0.6, 0.5, and 0.0)) and defect site effects in the CO oxidation reaction was investigated. Spectroscopic (e.g., Raman, XRD, XPS) and microscopic (e.g., SEM-EDX, HR-TEM) characterization techniques were applied to evaluate the defect sites, crystallite size, lattice parameters, chemical composition, oxidation states of elements and microstructure of the catalysts. The CO oxidation reaction with varied CO:O2 ratios (1 : 5, 1 : 1, and 1 :0.5 (stoichiometric)) was used as a model reaction to describe the relationship between the structure and the catalytic performance of each catalyst. Based on the characterization results of CeyZr1−yO2 materials, the addition of Zr causes physical and chemical changes to the overall material. The inclusion of Zr into the structure of CeO2 decreased the overall lattice parameter of the catalyst and increased the number of defect sites. The prepared catalysts were able to reach complete CO conversion (∼100%) at low temperature conditions (<200 °C), each showing varied reaction activity. The difference in CO oxidation activity was then analyzed and related to the structure, wherein Cu loading, surface oxygen vacancies, reduction–oxidation ability, CuOx–support interaction and oxygen mobility in the catalyst were the crucial descriptors.  more » « less
Award ID(s):
2050824
PAR ID:
10655967
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Royal Society of Chemistry
Date Published:
Journal Name:
Catalysis Science & Technology
Volume:
14
Issue:
24
ISSN:
2044-4753
Page Range / eLocation ID:
7107-7123
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Chemical Looping Reaction is a key strategy to achieve both emission reduction and carbon utilization while producing various value-added chemicals, through redox reactions. Here we study the effect of nanoshape ceria supported Ru catalysts for plasma assisted Chemical Looping Reforming reduction step coupled with water splitting oxidation step reactions in the temperature range 150 ⁰C to 400 ⁰C at 1 atm pressure. The oxygen carrier/catalyst combination materials used are Ru/CeO2 nanorods (NR), Ru/CeO2 nanocubes (NC), Ru/SiO2 nanospheres (NS), and Ni-based perovskite mixed with CeO2. NRs and NCs showed the best catalytic performance followed by Ni-based perovskite and NS. Differences in the selectivity and reactivity for the NRs and NCs were noticed. The NCs showed slightly higher selectivity towards H2 formation during reduction step and lesser carbon deposition. From the analysis of data and literature, it is proposed that the spillover of species such as H adatoms and CHx radicals after activation at Ru sites into the CeO2 supports and lattice O mobility may be slightly faster in the case of NCs. During the oxidation step, the NR and NC materials showed increased H2 production by a factor of more than 4 when compared to Ni based perovskite material. 
    more » « less
  2. Understanding the origin of enhanced catalytic activity is critical to heterogeneous catalyst design. This is especially important for non-noble metal-based catalysts, notably metal oxides, which have recently emerged as viable candidates for numerous thermal catalytic processes. For thermal catalytic reduction/hydrogenation using metal oxide nanoparticles, enhanced catalytic performance is typically attributed to an increased surface area and the presence of oxygen vacancies. Concomitantly, the treatments that induce oxygen vacancies also impact other material properties, such as the microstrain, crystallinity, oxidation state, and particle shape. Herein, multivariate statistical analysis is used to disentangle the impact of material properties of CuO nanoparticles on catalytic rates for nitroaromatic and methylene blue reduction. The impact of the microstrain, shape, and Cu(0) atomic percent is demonstrated for these reactions; furthermore, a protocol for correlating material property parameters to catalytic efficiency is presented, and the importance of catalyst design for these broadly utilized probe reactions is highlighted. 
    more » « less
  3. Propane oxidative dehydrogenation (ODH) in the presence of CO 2 was investigated over a series of Fe-doped CeO 2 catalysts. The well-recognized properties of cerium oxide materials regarding improved oxygen mobility and oxygen storage capacity (OSC) were utilized towards the synthesis of stable catalytic systems. The iron–cerium oxide solid solution catalysts with an Fe dopant content from 1% up to 15% were successfully synthesized via a co-precipitation method and calcined at 873 K. It was confirmed by XRD and Raman characterization that all samples featured a single cerianite crystalline phase with periodic lattice Ce ions substituted by Fe ions, with no hematite phase identified. Initial screening of catalytic behavior showed that the propane ODH pathway was enhanced at high Fe/Ce ratio while propane cracking was suppressed. Stable propane conversion and propylene selectivity for up to 20 hours were achieved for the synthesized catalysts with moderate Fe loading. Ex situ Raman, XPS and STEM were applied to analyze post-reaction catalysts and confirmed that deactivation occurring over low Fe catalysts resulted from coke deposition on the surface, while CeO 2 sintering and Fe migration to form nanocrystals were the primary deactivation reasons for high Fe loading catalysts. 
    more » « less
  4. Previous studies have shown that fats, oils, and greases (FOG) can be deoxygenated to fuel-like hydrocarbons over inexpensive alumina-supported Ni catalysts promoted with Cu or Fe to afford excellent yields of renewable diesel (RD). In this study, supports other than alumina—namely, SiO2-Al2O3, Ce0.8Pr0.2O2, and ZrO2—were investigated to develop catalysts showing improved RD yields and resistance to coke-induced deactivation relative to Al2O3-supported catalysts. Results showed that catalysts supported on Ce0.8Pr0.2O2 and ZrO2 outperformed SiO2-Al2O3-supported formulations, with 20%Ni-5%Fe/ZrO2 affording a quantitative yield of diesel-like hydrocarbons. Notably, the abundance of weak acid sites varied considerably across the different supports, and a moderate concentration of these sites corresponded with the best results. Additionally, temperature-programmed reduction measurements revealed that Ni reduction is greatly dependent on both the identity of the promoter and catalyst support, which can also be invoked to explain catalyst performance since metallic Ni is identified as the likely active site for the deoxygenation reaction. It was also observed that Ce0.8Pr0.2O2 provides high oxygen storage capacity and oxygen mobility/accessibility, which also improves catalyst activity. 
    more » « less
  5. Abstract The ability to control phase structures and surface sites of ultrasmall alloy nanoparticles under reaction conditions is essential for preparing catalysts by design. This is, however, challenging due to limited understanding of the atomic‐scale phases and their correlation with the ensemble‐averaged structures and activities of catalysts during catalytic reactions. We reveal here a dynamic structural stability of alumina‐supported ultrasmall and equiatomic copper‐gold alloy nanoparticles under reaction conditions as a model system in the in situ/operando study. In situ atomic‐scale morphological tracking under oxygen reveals temperature‐dependent dynamic crystalline‐amorphous dual‐phase structures, showing dynamic stability over an elevated temperature range. This atomic‐scale dynamic phase stability coincides with a “conversion plateau” observed for carbon monoxide oxidation on the catalyst. It is substantiated by the stable lattice ordering/disordering structures and surface sites with oscillatory characteristics shown by operando ensemble‐average structural tracking of the catalyst during the oxidation reaction. The understanding of the atomic‐scale dynamic phase structures in correlation with the ensemble‐average dynamic ordering/disordering phase structures and surface sites provides fresh insights into the unique synergy of the supported alloy nanoparticles. This understanding has implications for the design and structural tuning of active and stable ultrasmall alloy catalysts under elevated temperatures. 
    more » « less