skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 19, 2026

Title: The Impact of Physically Demanding Human-Drone Communication on Worker Mental Stress
While drones have exhibited considerable potential to revolutionize the construction industry, previous studies across domains have proposed that human-drone interaction could cause adverse impacts on humans (e.g., collision and discomfort). Given that construction has been recognized as a hazardous and high-stress workplace, it deserves deep exploration regarding how newly introduced drones will influence worker well-being during the interaction. However, there is a paucity of research on worker stress when communicating with drones in construction. Successful human-drone interaction must necessitate seamless and comfortable communication between workers and drones. Therefore, this study investigates the impact of physically demanding response levels on construction workers’ mental and physical well-being throughout the communication cycle. Three levels of physical responses (low, medium, and high) required for drone communication were simulated in an extended reality roofing experiment. During the communication process, real-time stress levels were assessed through participants’ electrodermal activity. The results indicated that a higher physical level of communication significantly increased workers’ higher stress levels in both the response and decoding phases. Additionally, providing drones’ feedback in verbal human-drone communication is especially important to reduce workers’ confusion and mental stress. This study highlights the critical need for worker-centric design and communication strategies in drone integration within construction.  more » « less
Award ID(s):
2128970
PAR ID:
10656045
Author(s) / Creator(s):
; ;
Publisher / Repository:
CIB
Date Published:
Journal Name:
CIB Conferences
Volume:
1
Issue:
1
ISSN:
3067-4883
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. While unmanned aerial vehicles (a.k.a. drones) have been recognized as potential robotic teammates that could be incorporated into the construction industry, communication between workers and drones may impose additional mental demands and workloads that could lead to workers’ mental overload on construction jobsites. To address this concern, this study examines and quantifies workers’ mental demands while communicating with drones at different human-drone interaction levels—coexistence, cooperation, and collaboration. During a futuristic bricklaying experiment wherein workers needed to communicate with drones at different interaction levels, psychophysiological sensors measured electrodermal activity, brain activation, and eye movements to assess whether the respective interactions affected workers’ mental demands. The results indicate that coexistence requires workers’ visual attention, whereas cooperation imposes affective and perceptual demands since workers were frustrated and confused when decoding and responding to messages from the drone. Moreover, higher levels of mental demands were identified in collaborative communications because sharing an object with nearby drones raised workers’ safety concerns. This research contributes to the body of knowledge by demonstrating workers experience varying dimensions of mental demands during communication with drones, and the study suggests strategies to enhance effortless worker-drone communication at coexistence, cooperation, and collaboration levels to improve worker well-being in future construction. 
    more » « less
  2. The integration of robots, particularly drones, into future construction sites introduces new safety challenges requiring enhanced situational awareness (SA) among workers. To address these challenges, this study explores the effectiveness of an AI-driven assistant designed to inform workers about dynamic environmental changes via auditory and visual channels. A mixed-reality bricklaying experiment was developed, simulating worker-drone interactions across three interaction levels: coexistence, cooperation, and collaboration. One hundred five construction-background students participated in tasks with and without the AI assistant, during which their eye-tracking data, productivity, and subjective perceptions were collected. Results indicated that the AI assistant significantly expedited workers’ awareness of approaching drones but concurrently reduced bricklaying productivity. Although participants reported high perceived usefulness and low distraction by the AI assistant itself, findings revealed a trade-off: improved SA toward drones came at the cost of decreased task performance, likely due to increased attentional shifts toward drones. Furthermore, the effectiveness of the assistant varied depending on the interaction level with drones. This study highlights both the opportunities and challenges of applying AI-driven informational systems in future construction environments, offering critical insights for designing human-centered AI technologies that balance safety enhancement with productivity maintenance. 
    more » « less
  3. Integrating drones into construction sites can introduce new risks to workers who already work in hazardous environments. Consequently, several recent studies have investigated the safety challenges and solutions associated with this technology integration in construction. However, there is a knowledge gap about effectively communicating such safety challenges to construction professionals and students who may work alongside drones on job sites. In this study, a 360-degree virtual reality (VR) environment was created as a training platform to communicate the safety challenges of worker-drone interactions on construction jobsites. This pilot study assesses the learning effectiveness and user experience of the developed 360 VR worker-drone safety training, which provides an immersive device-agnostic learning experience. The result indicates that such 360 VR learning material could significantly increase the safety knowledge of users while delivering an acceptable user experience in most of its assessment criteria. The outcomes of this study will serve as a valuable resource for improving future worker-drone safety training materials. 
    more » « less
  4. Advances in robotics have contributed to the prevalence of human-robot collaboration (HRC). Working and interacting with collaborative robots in close proximity can be psychologically stressful. Therefore, it is important to understand the impacts of human-robot interaction (HRI) on mental stress to promote psychological well-being at the workplace. To this end, this study investigated how the HRI presence, complexity, and modality affect psychological stress in humans and discussed possible HRI design criteria during HRC. An experimental setup was implemented in which human operators worked with a collaborative robot on a Lego assembly task, using different interaction paradigms involving pressing buttons, showing hand gestures, and giving verbal commands. The NASA-Task Load Index, as a subjective measure, and the physiological galvanic skin conductance response, as an objective measure, were used to assess the levels of mental stress. The results revealed that the introduction of interactions during HRC helped reduce mental stress and that complex interactions resulted in higher mental stress than simple interactions. Meanwhile, the use of certain interaction modalities, such as verbal commands or hand gestures, led to significantly higher mental stress than pressing buttons, while no significant difference on mental stress was found between showing hand gestures and giving verbal commands. 
    more » « less
  5. Limited research has been conducted on the mental health concerns of frontline and essential workers and their children during the COVID-19 pandemic in the United States (U.S.). This study examined the association between working on the frontlines in the U.S. during the COVID-19 pandemic (March to July 2020) and personal crisis text concerns (e.g., self-harm, suicidal thoughts, anxiety/stress, and substance abuse) for frontline essential workers and the children of frontline workers. We used a novel data set from a crisis texting service, Crisis Text Line (CTL), that is widely used throughout the U.S. Generalized Estimating Equations examined the individual association between eight specific crisis types (Depression, Stress/Anxiety, Self-Harm, Suicidal Thoughts, Substance Abuse, Isolation, Relationship Issues, and Abuse) and being in frontline work or being a child of a frontline worker during the early phase of the pandemic. Using CTL concerns as a proxy for the prevalence of mental health issues, we found that children of workers, specifically the youngest demographic (13 years and under), females, and non-conforming youth had a higher risk of specific crisis events during the COVID-19 pandemic. Additionally, Hispanic children of workers reported higher rates of stress/anxiety, whereas African American children of workers had higher rates of abuse and depression. Frontline workers had a higher risk of suicidal thoughts, and the risk of crisis events was generally highest for non-binary, transgender, and male users. Increases in CTL usage among frontline workers were noted across 7–28 days after spikes in local COVID-19 cases. The research to date has focused on the mental health of frontline essential workers, but our study highlights troubling trends in psychological stress among children of these workers. Supportive interventions and mental health resources are needed not only for frontline essential workers but for their children too. 
    more » « less