This paper presents an experience report on using an interactive program visualization tool — Dynamic, Interactive Stack-Smashing Attack Visualization (DISSAV) — and a complementary active-learning exercise to teach stack smashing, a key software security attack. The visualization tool and active-learning exercise work synergistically to guide the student through challenging, abstract concepts in the advanced cybersecurity area. DISSAV and the exercise are deployed within the software security module of an undergraduate cybersecurity course that introduces a broad range of security topics. A study is designed that collects and evaluates student perceptions on the user interface of DISSAV and the effectiveness of the two resources in improving student learning and engagement. The study finds that over 80% of responses to user interface questions, 66% of responses to student learning questions and 64% of responses to student engagement questions are positive, suggesting that the resources improve student learning and engagement in general. The study does not find discernible patterns of difference in responses from students of different ages and varying levels of prior experience with stack smashing attacks, program visualization tools and C programming.
more »
« less
This content will become publicly available on July 10, 2026
Jupyter Book 2 and the MyST Document Stack: A modular, extensible, web-native stack for authoring and publishing computational narratives
Jupyter Book allows researchers and educators to create books and knowledge bases that are reusable, reproducible, and interactive. This new foundation introduces a scalable way to publish interactive computational content, support structured metadata, and enable content reuse across contexts.
more »
« less
- PAR ID:
- 10656203
- Publisher / Repository:
- Proceedings of the 24th Python in Science Conference
- Date Published:
- Page Range / eLocation ID:
- 173 to 193
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Social media has become an indispensable resource in disaster response, providing real-time crowdsourced data on public experiences, needs, and conditions during crises. This user-generated content enables government agencies and emergency responders to identify emerging threats, prioritize resource allocation, and optimize relief operations through data-driven insights. We present an AI-powered framework that combines natural language processing with geospatial visualization to analyze disaster-related social media content. Our solution features a text analysis model that achieved an 81.4% F1 score in classifying Twitter/X posts, integrated with an interactive web platform that maps emotional trends and crisis situations across geographic regions. The system’s dynamic visualization capabilities allow authorities to monitor situational developments through an interactive map, facilitating targeted response coordination. The experimental results show the model’s effectiveness in extracting actionable intelligence from Twitter/X posts during natural disasters.more » « less
-
ABSTRACT Environmental conditions such as temperature and resource availability can shape disease transmission by altering contact rates and/or the probability of infection given contact. However, interactive effects of these factors on transmission processes remain poorly understood. We develop mechanistic models and fit them to experimental data to uncover how temperature and resources jointly affect transmission of fungal parasites (Metschnikowia bicuspidata) in zooplankton hosts (Daphnia dentifera). Model competition revealed interactive effects of temperature and resources on both contact rates (host foraging) and the probability of infection given contact (per‐parasite susceptibility). Foraging rates increased with temperature and decreased with resources (via type‐II functional response), but this resource effect weakened at warmer temperatures due to shorter handling times. Per‐parasite susceptibility increased with resources at cooler temperatures but remained consistently high when warmer. Our analysis demonstrates that temperature and resources interact to shape transmission processes and provides a general theoretical framework for other host–parasite systems.more » « less
-
null (Ed.)ABSTRACT It is difficult in asynchronous online instruction to keep students engaged and motivated. The rapid and unexpected nature of the move to online instruction has meant that the content presented to students has been primarily static and linear. Thus, there is a need for creative pedagogical approaches that re-create some level of the laboratory experience. One economical and accessible approach to building an interactive lab experience is making web-based interactive slides. In the virtual spaces created by this approach, students can explore different modalities of content in a nonlinear and asynchronous manner. We hope that this approach will make the learning process easier and more enjoyable for students while simultaneously making the complex content normally covered in microbiology labs more approachable. In this article we provide detailed instructions for producing web-based interactive slides as well as an example interactive slide that encompasses content that might normally be presented in an introductory microbiology class.more » « less
-
In recent years, interactive textbooks have gained prominence in an effort to overcome student reluctance to routinely read textbooks, complete assigned homeworks, and to better engage students to keep up with lecture content. Interactive textbooks are more structured, contain smaller amounts of textual material, and integrate media and assessment content. While these are an arguable improvement over traditional methods of teaching, issues of academic integrity and engagement remain. In this work we demonstrate preliminary work on building interactive teaching modules for data structures and algorithms courses with the following characteristics, (1) the modules are highly visual and interactive, (2) training and assessment are tightly integrated within the same module, with sufficient variability in the exercises to make it next to impossible to violate academic integrity, (3) a data logging and analytic system that provides instantaneous student feedback and assessment, and (4) an interactive visual analytic system for the instructor to see students’ performance at the individual, sub-group or class level, allowing timely intervention and support for selected students. Our modules are designed to work within the infrastructure of the OpenDSA system, which will promote rapid dissemination to an existing user base of CS educators. We demonstrate a prototype system using an example dataset.more » « less
An official website of the United States government
