We report the initial findings of our Survey of the Circumgalactic Regions of the ALFALFA Galaxies (CRAG). We combine the blindly detected 21-cm HI sources of the ALFALFA catalog with archival HST/COS G130M QSO spectroscopic observations taken from the HST Spectroscopic Legacy Archive to quantify and characterize the circumgalactic medium (CGM) around these local, HI-rich galaxies. We find the covering factor of HI, as probed by Lyα, to be near unity within 50 kpc of all ALFALFA galaxies, regardless of HI mass, MHI. However, we have identified a significant correlation between the extent of the HI-bearing CGM beyond 50 kpc and MHI of the ALFALFA galaxies. We find the galaxies with log(MHI/M☉) > 9.5 give rise to Lyα covering factors > 0.5 out to 300 kpc, indicating the CGM of the most HI-rich galaxies of the ALFALFA sample fills a significant volume. At the same time we find the galaxies with log(MHI/M☉) < 9.5 give rise to substantively lower Lyα covering factors beyond 50 kpc. Most notably, the log(MHI/M☉) < 7.5 galaxies give rise to a Lyα covering factor < 0.3 beyond 50 kpc and negligible covering factors beyond 150 kpc. This work has been supported by NSF grant AST-1716569.
more »
« less
Where do the Disks of Nearby, Massive Spiral Galaxies End?
The structure and properties of the circumgalactic medium (CGM) between R ~30–100 kpc around nearby, massive spiral galaxies remain largely unknown. One hypothesis is that large quantities of gas are held in rotationally-supported disks of neutral hydrogen (HI) that extend out to ~100 kpc. While observations of individual galaxies have detected HI out to distances of 80 kpc, a larger sample is necessary to determine the frequency and characteristics of extended HI disks. Using the Green Bank Telescope (GBT) we conducted a comprehensive survey mapping HI along the major and minor axes of 20 mass-selected galaxies to distances of 100 kpc and a limiting column density of 2 x 1018 cm-2. We have determined the total extended HI mass and its distribution within each galaxy by fitting our data to HI distribution models. We have found rotationally-supported disks in ~50% of the sample that extend to distances between 40 and 100 kpc.
more »
« less
- Award ID(s):
- 2007013
- PAR ID:
- 10656233
- Publisher / Repository:
- Bulletin of the American Astronomical Society
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
As part of our Survey of the Circumgalactic Regions of the ALFALFA Galaxies (CRAG), we report on the analysis of QSO sightlines that pass within ~100 kpc of ALFALFA galaxies that show no discernable evidence of a circumgalactic medium (CGM) as probed by the presence of Lyα absorption. Many of these corresponding galaxies reside in group or cluster environments, in agreement with recent studies that indicate the nearby galaxy environment plays a significant role in determining the physical conditions of the CGM. However, we also identify a sample of isolated ALFALFA galaxies that show no evidence of HI within ~100 kpc - suggesting the physical distribution of the CGM around these galaxies is patchy and non-uniform, even within relatively small volumes around the galaxies. We explore photometric, spectroscopic, and imaging observations from the Sloan Digital Sky Survey in an attempt to characterize the properties these galaxies and the environments in which they reside. This work has been supported by NSF grant AST-1716569.more » « less
-
Abstract We report Hubble Space Telescope Cosmic Origins Spectrograph spectroscopy of 10 quasars with foreground star-forming galaxies at 0.02 < z < 0.14 within impact parameters of ∼1–7 kpc. We detect damped/sub-damped Ly α (DLA/sub-DLA) absorption in 100% of cases where no higher-redshift Lyman-limit systems extinguish the flux at the expected wavelength of Ly α absorption, obtaining the largest targeted sample of DLA/sub-DLAs in low-redshift galaxies. We present absorption measurements of neutral hydrogen and metals. Additionally, we present Green Bank Telescope 21 cm emission measurements for five of the galaxies (including two detections). Combining our sample with the literature, we construct a sample of 117 galaxies associated with DLA/sub-DLAs spanning 0 < z < 4.4, and examine trends between gas and stellar properties, and with redshift. The H i column density is anticorrelated with impact parameter and stellar mass. More massive galaxies appear to have gas-rich regions out to larger distances. The specific star formation rate (sSFR) of absorbing galaxies increases with redshift and decreases with M *, consistent with evolution of the star formation main sequence (SFMS). However, ∼20% of absorbing galaxies lie below the SFMS, indicating that some DLA/sub-DLAs trace galaxies with longer-than-typical gas-depletion timescales. Most DLA/sub-DLA galaxies with 21 cm emission have higher H i masses than typical galaxies with comparable M *. High M HI / M * ratios and high sSFRs in DLA/sub-DLA galaxies with M * < 10 9 M ⊙ suggest these galaxies may be gas-rich because of recent gas accretion rather than inefficient star formation. Our study demonstrates the power of absorption and emission studies of DLA/sub-DLA galaxies for extending galactic evolution studies to previously under-explored regimes of low M * and low SFR.more » « less
-
ABSTRACT While many tensions between Local Group (LG) satellite galaxies and Λ cold dark matter cosmology have been alleviated through recent cosmological simulations, the spatial distribution of satellites remains an important test of physical models and physical versus numerical disruption in simulations. Using the FIRE-2 cosmological zoom-in baryonic simulations, we examine the radial distributions of satellites with $$M_*\gt 10^5$$ M⊙ around eight isolated Milky Way (MW) mass host galaxies and four hosts in LG-like pairs. We demonstrate that these simulations resolve the survival and physical destruction of satellites with $$M_*\gtrsim 10^5$$ M⊙. The simulations broadly agree with LG observations, spanning the radial profiles around the MW and M31. This agreement does not depend strongly on satellite mass, even at distances ≲100 kpc. Host-to-host variation dominates the scatter in satellite counts within 300 kpc of the hosts, while time variation dominates scatter within 50 kpc. More massive host galaxies within our sample have fewer satellites at small distances, likely because of enhanced tidal destruction of satellites via the baryonic discs of host galaxies. Furthermore, we quantify and provide fits to the tidal depletion of subhaloes in baryonic relative to dark matter-only simulations as a function of distance. Our simulated profiles imply observational incompleteness in the LG even at $$M_*\gtrsim 10^5$$ M⊙: we predict 2–10 such satellites to be discovered around the MW and possibly 6–9 around M31. To provide cosmological context, we compare our results with the radial profiles of satellites around MW analogues in the SAGA survey, finding that our simulations are broadly consistent with most SAGA systems.more » « less
-
ABSTRACT Recent observations and simulations indicate substantial evolution in the properties of galaxies with time, wherein rotationally supported and steady thin discs (like those frequently observed in the local Universe) emerge from galaxies that are clumpy, irregular, and have bursty star formation rates (SFRs). To better understand the progenitors of local disc galaxies, we carry out an analysis of three FIRE-2 simulated galaxies with a mass similar to the Milky Way at redshift z = 0. We show that all three galaxies transition from bursty to steady SFRs at a redshift between z = 0.5 and z = 0.8, and that this transition coincides with the rapid (≲1 Gyr) emergence of a rotationally supported interstellar medium (ISM). In the late phase with steady SFR, the rotational energy comprises $${\gtrsim }90{{\ \rm per\ cent}}$$ of the total kinetic + thermal energy in the ISM, and is roughly half the gravitational energy. By contrast, during the early bursty phase, the ISM initially has a quasi-spheroidal morphology and its energetics are dominated by quasi-isotropic in- and outflows out of virial equilibrium. The subdominance of rotational support and out-of-equilibrium conditions at early times challenge the application of standard equilibrium disc models to high-redshift progenitors of Milky Way-like galaxies. We further find that the formation of a rotationally-supported ISM coincides with the onset of a thermal pressure supported inner circumgalactic medium (CGM). Before this transition, there is no clear boundary between the ISM and the inner CGM.more » « less
An official website of the United States government

