Hydrogen emission lines can provide extensive information about star-forming galaxies in both the local and high-redshift Universe. We present a detailed Lyman continuum (LyC), Lyman-α (Lyα), and Balmer line (Hα and Hβ) radiative transfer study of a high-resolution isolated Milky Way simulation using the state-of-the-art Arepo-RT radiation hydrodynamics code with the SMUGGLE galaxy formation model. The realistic framework includes stellar feedback, non-equilibrium thermochemistry accounting for molecular hydrogen, and dust grain evolution in the interstellar medium (ISM). We extend our publicly available Cosmic Lyα Transfer (COLT) code with photoionization equilibrium Monte Carlo radiative transfer and various methodology improvements for self-consistent end-to-end (non-)resonant line predictions. Accurate LyC reprocessing to recombination emission requires modelling pre-absorption by dust ($f_\text{abs} \approx 27.5\,\rm{per\,\,cent}$), helium ionization ($f_\text{He} \approx 8.7\,\rm{per\,\,cent}$), and anisotropic escape fractions ($f_\text{esc} \approx 7.9\,\rm{per\,\,cent}$), as these reduce the available budget for hydrogen line emission ($f_\text{H} \approx 55.9\,\rm{per\,\,cent}$). We investigate the role of the multiphase dusty ISM, disc geometry, gas kinematics, and star formation activity in governing the physics of emission and escape, focusing on the time variability, gas-phase structure, and spatial spectral, and viewing angle dependence of the emergent photons. Isolated disc simulations are well-suited for comprehensive observational comparisons with local Hα surveys, butmore »
Recent observations and simulations indicate substantial evolution in the properties of galaxies with time, wherein rotationally supported and steady thin discs (like those frequently observed in the local Universe) emerge from galaxies that are clumpy, irregular, and have bursty star formation rates (SFRs). To better understand the progenitors of local disc galaxies, we carry out an analysis of three FIRE-2 simulated galaxies with a mass similar to the Milky Way at redshift z = 0. We show that all three galaxies transition from bursty to steady SFRs at a redshift between z = 0.5 and z = 0.8, and that this transition coincides with the rapid (≲1 Gyr) emergence of a rotationally supported interstellar medium (ISM). In the late phase with steady SFR, the rotational energy comprises ${\gtrsim }90{{\ \rm per\ cent}}$ of the total kinetic + thermal energy in the ISM, and is roughly half the gravitational energy. By contrast, during the early bursty phase, the ISM initially has a quasi-spheroidal morphology and its energetics are dominated by quasi-isotropic in- and outflows out of virial equilibrium. The subdominance of rotational support and out-of-equilibrium conditions at early times challenge the application of standard equilibrium disc models to high-redshift progenitors of Milky Way-like galaxies. We further more »
- Publication Date:
- NSF-PAR ID:
- 10389545
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 519
- Issue:
- 2
- Page Range or eLocation-ID:
- p. 2598-2614
- ISSN:
- 0035-8711
- Publisher:
- Oxford University Press
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT -
ABSTRACT While emission-selected galaxy surveys are biased towards the most luminous part of the galaxy population, absorption selection is a potentially unbiased galaxy selection technique with respect to luminosity. However, the physical properties of absorption-selected galaxies are not well characterized. Here, we study the excitation conditions in the interstellar medium (ISM) in damped Ly α (DLA) absorption-selected galaxies. We present a study of the CO spectral-line energy distribution (SLED) in four high-metallicity absorption-selected galaxies with previously reported CO detections at intermediate (z ∼ 0.7) and high (z ∼ 2) redshifts. We find further evidence for a wide variety of ISM conditions in these galaxies. Two out of the four galaxies show CO SLEDs consistent with that of the Milky Way inner disc. Interestingly, one of these galaxies is at z ∼ 2 and has a CO SLED below that of main-sequence galaxies at similar redshifts. The other two galaxies at z > 2 show more excited ISM conditions, with one of them showing thermal excitation of the mid-J (J = 3, 4) levels, similar to that seen in two massive main-sequence galaxies at these redshifts. Overall, we find that absorption selection traces a diverse population of galaxies.
-
null (Ed.)ABSTRACT We investigate thin and thick stellar disc formation in Milky Way-mass galaxies using 12 FIRE-2 cosmological zoom-in simulations. All simulated galaxies experience an early period of bursty star formation that transitions to a late-time steady phase of near-constant star formation. Stars formed during the late-time steady phase have more circular orbits and thin-disc-like morphology at z = 0, while stars born during the bursty phase have more radial orbits and thick-disc structure. The median age of thick-disc stars at z = 0 correlates strongly with this transition time. We also find that galaxies with an earlier transition from bursty to steady star formation have a higher thin-disc fractions at z = 0. Three of our systems have minor mergers with Large Magellanic Cloud-size satellites during the thin-disc phase. These mergers trigger short starbursts but do not destroy the thin disc nor alter broad trends between the star formation transition time and thin/thick-disc properties. If our simulations are representative of the Universe, then stellar archaeological studies of the Milky Way (or M31) provide a window into past star formation modes in the Galaxy. Current age estimates of the Galactic thick disc would suggest that the Milky Way transitioned from bursty to steady phasemore »
-
ABSTRACT Advances in instrumentation have recently extended detailed measurements of gas kinematics to large samples of high-redshift galaxies. Relative to most nearby, thin disc galaxies, in which gas rotation accurately traces the gravitational potential, the interstellar medium (ISM) of $z$ ≳ 1 galaxies is typically more dynamic and exhibits elevated turbulence. If not properly modelled, these effects can strongly bias dynamical mass measurements. We use high-resolution FIRE-2 cosmological zoom-in simulations to analyse the physical effects that must be considered to correctly infer dynamical masses from gas kinematics. Our analysis covers a range of galaxy properties from low-redshift Milky-Way-mass galaxies to massive high-redshift galaxies (M⋆ > 1011 M⊙ at $z$ = 1). Selecting only snapshots where a disc is present, we calculate the rotational profile $\bar{v}_\phi (r)$ of the cool ($10^{3.5}\,\lt {\it T}\lt 10^{4.5}~\rm {K}$) gas and compare it to the circular velocity $v_{\rm c}=\sqrt{GM_{\rm enc}/r}$. In the simulated galaxies, the gas rotation traces the circular velocity at intermediate radii, but the two quantities diverge significantly in the centre and in the outer disc. Our simulations appear to over-predict observed rotational velocities in the centres of massive galaxies (likely from a lack of black hole feedback), so we focus on largermore »
-
A high-resolution investigation of the multiphase ISM in a galaxy during the first two billion years
ABSTRACT We have carried out the first spatially resolved investigation of the multiphase interstellar medium (ISM) at high redshift, using the z = 4.24 strongly lensed submillimetre galaxy H-ATLASJ142413.9+022303 (ID141). We present high-resolution (down to ∼350 pc) ALMA observations in dust continuum emission and in the CO(7–6), $\rm H_2O (2_{1,1} - 2_{0,2})$, [C i] (1–0), and [C i] (2–1) lines, the latter two allowing us to spatially resolve the cool phase of the ISM for the first time. Our modelling of the kinematics reveals that the system appears to be dominated by a rotationally-supported gas disc with evidence of a nearby perturber. We find that the [C i] (1–0) line has a very different distribution to the other lines, showing the existence of a reservoir of cool gas that might have been missed in studies of other galaxies. We have estimated the mass of the ISM using four different tracers, always obtaining an estimate in the range of $\rm 3.2{\!-\!}3.8 \times 10^{11}\ M_{\odot }$, significantly higher than our dynamical mass estimate of $\rm 0.8{\!-\!}1.3 \times 10^{11}\ M_{\odot }$. We suggest that this conflict and other similar conflicts reported in the literature is because the gas-to-tracer ratios are ≃4 times lower than the Galactic values used to calibrate themore »