skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 18, 2026

Title: Childhood skeletal lesions common in prehistory are present in living forager-farmers and predict adult markers of immune function
Porous cranial lesions (cribra cranii and cribra orbitalia) are widely used by archaeologists as skeletal markers of poor child health. However, their use has not been validated with systematic data from contemporary populations, where there has been little evidence of these lesions or their health relevance. Using 375 in vivo computed tomography scans from a cohort-representative sample of adults aged 40+ years from the Bolivian Amazon, among food-limited, high-mortality forager-farmers, we identified cribra cranii on 46 (12.3%) and cribra orbitalia on 23 (6%). Cribra orbitalia was associated with several hallmarks of compromised immune function, including fewer B cells, fewer naïve CD4+T cells, a lower CD4+/CD8+T cell ratio, and higher tuberculosis risk. However, neither lesion type predicted other physician-diagnosed respiratory diseases, other markers of cell-mediated immunity, or hemoglobin values. While cribra orbitalia shows promise as a skeletal indicator of health challenges, our findings do not support the continued practice of using these lesions to infer anemia in adults.  more » « less
Award ID(s):
1945794
PAR ID:
10656420
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  more » ;  ;  ;  ;  ;   « less
Publisher / Repository:
Science Advances
Date Published:
Journal Name:
Science Advances
Volume:
11
Issue:
29
ISSN:
2375-2548
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. CD4 T lymphocytes play a key role in initiating the adaptive immune response, releasing cytokines that mediate numerous signal transduction pathways across the immune system. Therefore, CD4 T cell counts are widely used as an indicator of overall immunological health. HIV, one of the leading causes of death in the developing world, specifically targets and gradually depletes CD4 cells, making CD4 counts a critical metric for monitoring disease progression. As a result, accurately counting CD4 cells represents a pressing challenge in global healthcare. Flow cytometry remains the gold standard for enumerating CD4 T cells; however, flow cytometers are expensive, difficult to transport, and require skilled medical staff to prepare samples, operate the equipment, and interpret results. This highlights the critical need for novel, rapid, cost-effective, and portable methods of CD4 enumeration that are suitable for deployment in resource-limited countries. This review will survey and analyze emerging research in CD4 counting, with a focus on microfluidic systems, which represent a promising area of investigation. 
    more » « less
  2. Abstract CD4 + T cells are central mediators of adaptive and innate immune responses and constitute a major reservoir for human immunodeficiency virus (HIV) in vivo. Detailed investigations of resting human CD4 + T cells have been precluded by the absence of efficient approaches for genetic manipulation limiting our understanding of HIV replication and restricting efforts to find a cure. Here we report a method for rapid, efficient, activation-neutral gene editing of resting, polyclonal human CD4 + T cells using optimized cell cultivation and nucleofection conditions of Cas9–guide RNA ribonucleoprotein complexes. Up to six genes, including HIV dependency and restriction factors, were knocked out individually or simultaneously and functionally characterized. Moreover, we demonstrate the knock in of double-stranded DNA donor templates into different endogenous loci, enabling the study of the physiological interplay of cellular and viral components at single-cell resolution. Together, this technique allows improved molecular and functional characterizations of HIV biology and general immune functions in resting CD4 + T cells. 
    more » « less
  3. Abstract Malnutrition is associated with reductions in the number and function of T lymphocytes. Previous studies in the lab suggest that malnutrition may also impart a “super-quiescent” phenotype to T cells, perhaps affecting the efficiency of their migration within and between lymph nodes. Thus, the purpose of this study is to evaluate the effect of malnutrition on T cell migration in vivo and to characterize malnutrition-induced changes in the expression of proteins known to be important for T cell migration. To determine if malnourishment alters T cell migration in vivo, we compared lymph node entry rates of adoptively-transferred malnourished and control T cells in malnourished and control recipients. In agreement with other studies, control CD4+ T cells were more efficient than control CD8+ T cells at entering the lymph nodes. Interestingly, regardless of recipient diet, malnourished CD4+ and CD8+ T cells entered the lymph nodes at equivalent rates, suggesting that malnourishment eliminates distinct lymph node entry efficiencies for CD8+ and CD4+ T cells. We also found important differences in the expression of key proteins involved in T cell migration between malnourished and control mice. Overall, we found that malnutrition disrupts T cell migration including the distinct migration efficiencies of CD4+ and CD8+ T cells. An improved understanding of T cell-intrinsic changes that occur during malnourishment should enhance our knowledge of CD4+ and CD8+ T cell migration and shed light on how organisms adapt to malnutrition. Supported by NSF-MRI [DBI- 1920116] NSF-RUI [IOS-1951881] 
    more » « less
  4. Transgenic coexpression of a class I–restricted tumor antigen–specific T cell receptor (TCR) and CD8αβ (TCR8) redirects antigen specificity of CD4 + T cells. Reinforcement of biophysical properties and early TCR signaling explain how redirected CD4 + T cells recognize target cells, but the transcriptional basis for their acquired antitumor function remains elusive. We, therefore, interrogated redirected human CD4 + and CD8 + T cells by single-cell RNA sequencing and characterized them experimentally in bulk and single-cell assays and a mouse xenograft model. TCR8 expression enhanced CD8 + T cell function and preserved less differentiated CD4 + and CD8 + T cells after tumor challenge. TCR8 + CD4 + T cells were most potent by activating multiple transcriptional programs associated with enhanced antitumor function. We found sustained activation of cytotoxicity, costimulation, oxidative phosphorylation– and proliferation-related genes, and simultaneously reduced differentiation and exhaustion. Our study identifies molecular features of TCR8 expression that can guide the development of enhanced immunotherapies. 
    more » « less
  5. The development of point-of-care, cost-effective, and easy-to-use assays for the accurate counting of CD4+ T cells remains an important focus for HIV-1 disease management. The CD4+ T cell count provides an indication regarding the overall success of HIV-1 treatments. The CD4+ T count information is equally important for both resource-constrained regions and areas with extensive resources. Hospitals and other allied facilities may be overwhelmed by epidemics or other disasters. An assay for a physician’s office or other home-based setting is becoming increasingly popular. We have developed a technology for the rapid quantification of CD4+ T cells. A double antibody selection process, utilizing anti-CD4 and anti-CD3 antibodies, is tested and provides a high specificity. The assay utilizes a microfluidic chip coated with the anti-CD3 antibody, having an improved antibody avidity. As a result of enhanced binding, a higher flow rate can be applied that enables an improved channel washing to reduce non-specific bindings. A wide-field optical imaging system is also developed that provides the rapid quantification of cells. The designed optical setup is portable and low-cost. An ImageJ-based program is developed for the automatic counting of CD4+ T cells. We have successfully isolated and counted CD4+ T cells with high specificity and efficiency greater than 90%. 
    more » « less