CD4 T lymphocytes play a key role in initiating the adaptive immune response, releasing cytokines that mediate numerous signal transduction pathways across the immune system. Therefore, CD4 T cell counts are widely used as an indicator of overall immunological health. HIV, one of the leading causes of death in the developing world, specifically targets and gradually depletes CD4 cells, making CD4 counts a critical metric for monitoring disease progression. As a result, accurately counting CD4 cells represents a pressing challenge in global healthcare. Flow cytometry remains the gold standard for enumerating CD4 T cells; however, flow cytometers are expensive, difficult to transport, and require skilled medical staff to prepare samples, operate the equipment, and interpret results. This highlights the critical need for novel, rapid, cost-effective, and portable methods of CD4 enumeration that are suitable for deployment in resource-limited countries. This review will survey and analyze emerging research in CD4 counting, with a focus on microfluidic systems, which represent a promising area of investigation.
more »
« less
Rapid, efficient and activation-neutral gene editing of polyclonal primary human resting CD4+ T cells allows complex functional analyses
Abstract CD4 + T cells are central mediators of adaptive and innate immune responses and constitute a major reservoir for human immunodeficiency virus (HIV) in vivo. Detailed investigations of resting human CD4 + T cells have been precluded by the absence of efficient approaches for genetic manipulation limiting our understanding of HIV replication and restricting efforts to find a cure. Here we report a method for rapid, efficient, activation-neutral gene editing of resting, polyclonal human CD4 + T cells using optimized cell cultivation and nucleofection conditions of Cas9–guide RNA ribonucleoprotein complexes. Up to six genes, including HIV dependency and restriction factors, were knocked out individually or simultaneously and functionally characterized. Moreover, we demonstrate the knock in of double-stranded DNA donor templates into different endogenous loci, enabling the study of the physiological interplay of cellular and viral components at single-cell resolution. Together, this technique allows improved molecular and functional characterizations of HIV biology and general immune functions in resting CD4 + T cells.
more »
« less
- Award ID(s):
- 1662096
- PAR ID:
- 10312610
- Date Published:
- Journal Name:
- Nature Methods
- ISSN:
- 1548-7091
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Human immunodeficiency virus (HIV) preferentially infects T-lymphocytes by integrating into host DNA and forming a latent transcriptionally silent provirus. As previously shown, HIV-1 alters migration modes of T-lymphocytes by co-regulating viral gene expression with human C-X-C chemokine receptor-4 (CXCR4). Here, we show that motility of infected T-lymphocytes is cell size dependent. In cell migration assays, migrating cells are consistently larger than non-migrating cells. This effect is drug-treatment independent. The cell size dependent motility observed in a previously generated Jurkat latency model correlates with the motility of primary human CD4+ T-cells containing a modified HIV-1 full-length construct JLatd2GFP. In addition, large migrating T-cells, latently infected with HIV, show a slightly decreased rate of reactivation from latency. these results demonstrate that HIV reactivation is cell migration-dependent, where host cell size acts as a catalyst for altered migration velocity. We believe that host cell size controlled migration uncovers an additional mechanism of cellular controlled viral fate determination important for virus dissemination and reactivation from latency. This observation may provide more insights into viral-host interactions regulating cell migration and reactivation from latency and helps in the design and implementation of novel therapeutic strategies.more » « less
-
The development of point-of-care, cost-effective, and easy-to-use assays for the accurate counting of CD4+ T cells remains an important focus for HIV-1 disease management. The CD4+ T cell count provides an indication regarding the overall success of HIV-1 treatments. The CD4+ T count information is equally important for both resource-constrained regions and areas with extensive resources. Hospitals and other allied facilities may be overwhelmed by epidemics or other disasters. An assay for a physician’s office or other home-based setting is becoming increasingly popular. We have developed a technology for the rapid quantification of CD4+ T cells. A double antibody selection process, utilizing anti-CD4 and anti-CD3 antibodies, is tested and provides a high specificity. The assay utilizes a microfluidic chip coated with the anti-CD3 antibody, having an improved antibody avidity. As a result of enhanced binding, a higher flow rate can be applied that enables an improved channel washing to reduce non-specific bindings. A wide-field optical imaging system is also developed that provides the rapid quantification of cells. The designed optical setup is portable and low-cost. An ImageJ-based program is developed for the automatic counting of CD4+ T cells. We have successfully isolated and counted CD4+ T cells with high specificity and efficiency greater than 90%.more » « less
-
Abstract Ag-specific immunotherapy to restore immune tolerance to self-antigens, without global immune suppression, is a long-standing goal in the treatment of autoimmune disorders such as type 1 diabetes (T1D). However, vaccination with autoantigens such as insulin or glutamic acid decarboxylase have largely failed in human T1D trials. Induction and maintenance of peripheral tolerance by vaccination requires efficient autoantigen presentation by APCs. In this study, we show that a lipophilic modification at the N-terminal end of CD4+ epitopes (lipo-peptides) dramatically improves peptide Ag presentation. We designed amphiphilic lipo-peptides to efficiently target APCs in the lymph nodes by binding and trafficking with endogenous albumin. Additionally, we show that lipophilic modification anchors the peptide into the membranes of APCs, enabling a bivalent cell-surface Ag presentation. The s.c. injected lipo-peptide accumulates in the APCs in the lymph node, enhances the potency and duration of peptide Ag presentation by APCs, and induces Ag-specific immune tolerance that controls both T cell– and B cell–mediated immunity. Immunization with an amphiphilic insulin B chain 9–23 peptide, an immunodominant CD4+ T cell epitope in NOD mice, significantly suppresses the activation of T cells, increases inhibitory cytokine production, induces regulatory T cells, and delays the onset and lowers the incidence of T1D. Importantly, treatment with a lipophilic β-cell peptide mixture delays progression to end-stage diabetes in acutely diabetic NOD mice, whereas the same doses of standard soluble peptides were not effective. Amphiphilic modification effectively enhances Ag presentation for peptide-based immune regulation of autoimmune diseases.more » « less
-
This paper develops a mathematical model to investigate the Human Immunodeficiency Virus (HIV) infection dynamics. The model includes two transmission modes (cell-to-cell and cell-free), two adaptive immune responses (cytotoxic T-lymphocyte (CTL) and antibody), a saturated CTL immune response, and latent HIV infection. The existence and local stability of equilibria are fully characterized by four reproduction numbers. Through sensitivity analyses, we assess the partial rank correlation coefficients of these reproduction numbers and identify that the infection rate via cell-to-cell transmission, the number of new viruses produced by each infected cell during its life cycle, the clearance rate of free virions, and immune parameters have the greatest impact on the reproduction numbers. Additionally, we compare the effects of immune stimulation and cell-to-cell spread on the model’s dynamics. The findings highlight the significance of adaptive immune responses in increasing the population of uninfected cells and reducing the numbers of latent cells, infected cells, and viruses. Furthermore, cell-to-cell transmission is identified as a facilitator of HIV transmission. The analytical and numerical results presented in this study contribute to a better understanding of HIV dynamics and can potentially aid in improving HIV management strategies.more » « less
An official website of the United States government

