Abstract Reactivation of toxoplasmosis is a significant health threat to chronically infected individuals, especially those who are or become immunocompromised. An estimated one-third of the world population is infected withToxoplasma, placing millions at risk. TheToxoplasmacyst is the foundation of disease with its ingestion leading to infection and its reactivation, from slow replicating bradyzoites to fast replicating tachyzoites, leading to cell lysis in tissues such as the brain. There are no treatments that prevent or eliminate cysts in part due to our poor understanding of the mechanisms that underlie cyst formation and recrudescence. In this study, we aimed to understand the biology of bradyzoites prior to recrudescence and the developmental pathways they initiate. We have discovered ME49EW cysts from infected mice harbor multiple bradyzoite subtypes that can be identified by their expression of distinct proteins. Sorting of these subtypes revealed they initiate distinct developmental pathways in animals and in primary astrocyte cell cultures. Single bradyzoite RNA sequencing indicates 5 major bradyzoite subtypes occur within these cysts. We further show that a crucial subtype comprising the majority of bradyzoites in chronically infected mice is absent from conventional in vitro models of bradyzoite development. Altogether this work establishes new foundational principles ofToxoplasmacyst development and reactivation that operate during the intermediate life cycle ofToxoplasma.
more »
« less
An ex vivo model of Toxoplasma recrudescence reveals developmental plasticity of the bradyzoite stage
ABSTRACT The recrudescence ofToxoplasmacysts is the cause of clinical disease in the immunocompromised. AlthoughToxoplasmahas been a useful parasite model for decades because it is relatively easy to genetically modify and culture, attempts to generate and study the recrudescence of tissue cysts have come up short with cell culture-adapted strains generating low numbers of tissue cystsin vivo. Taking advantage of a newex vivomodel ofToxoplasmarecrudescence that uses a Type II ME49 strain unadapted to cell culture, we determined the cell biology, gene expression, and host cell dependency that define bradyzoite-cyst reactivation. Bradyzoite infection of fibroblasts and astrocytes produced sequential tachyzoite growth stages with pre-programmed kinetics; thus, an initial fast-growing stage was followed by a slow-growing replicating form.In vivoinfections demonstrated that only fast growth tachyzoites, and not parasites post-growth shift, led to successful parasite dissemination to the brain and peripheral organs. In astrocytes, cells that reside in the central nervous system (CNS), bradyzoites initiated an additional recrudescent pathway involving brady-brady replication, which is a pathway not observed in fibroblasts. To investigate the molecular basis of growth and cell-dependent reactivation pathways, single-cell mRNA sequencing was performed on recrudescing parasites, revealing distinct gene signatures of these parasite populations and confirming multifunctionality of the originalex vivobradyzoite population. This revised model ofToxoplasmarecrudescence uncovers previously unknown complexity in the clinically important bradyzoite stage of the parasite, which opens the door to further study these novel developmental features of theToxoplasmaintermediate life cycle. IMPORTANCEThe classical depiction of theToxoplasmalifecycle is bradyzoite excystation conversion to tachyzoites, cell lysis, and immune control, followed by the reestablishment of bradyzoites and cysts. In contrast, we show that tachyzoite growth slows independent of the host immune response at a predictable time point following excystation. Furthermore, we demonstrate a host cell-dependent pathway of continuous amplification of the cyst-forming bradyzoite population. The developmental plasticity of the excysted bradyzoites further underlines the critical role the cyst plays in the flexibility of the lifecycle of this ubiquitous parasite. This revised model ofToxoplasmarecrudescence uncovers previously unknown complexity in the clinically important bradyzoite stage of the parasite, which opens the door to further study these novel developmental features of theToxoplasmaintermediate life cycle.
more »
« less
- Award ID(s):
- 2215705
- PAR ID:
- 10656666
- Editor(s):
- Boothroyd, John C; Saeij, Jeroen_P J
- Publisher / Repository:
- American Society for Microbiology
- Date Published:
- Journal Name:
- mBio
- Volume:
- 14
- Issue:
- 5
- ISSN:
- 2150-7511
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The blood stage of the infection of the malaria parasite Plasmodium falciparum exhibits a 48-hour developmental cycle that culminates in the synchronous release of parasites from red blood cells, which triggers 48-hour fever cycles in the host. This cycle could be driven extrinsically by host circadian processes or by a parasite-intrinsic oscillator. To distinguish between these hypotheses, we examine the P. falciparum cycle in an in vitro culture system and show that the parasite has molecular signatures associated with circadian and cell cycle oscillators. Each of the four strains examined has a different period, which indicates strain-intrinsic period control. Finally, we demonstrate that parasites have low cell-to-cell variance in cycle period, on par with a circadian oscillator. We conclude that an intrinsic oscillator maintains Plasmodium ’s rhythmic life cycle.more » « less
-
Propulsive cell entry diverts pathogens from immune degradation by remodeling the phagocytic synapsePhagocytosis is a critical immune function for infection control and tissue homeostasis. During phagocytosis, pathogens are internalized and degraded in phagolysosomes. For pathogens that evade immune degradation, the prevailing view is that virulence factors are required to disrupt the biogenesis of phagolysosomes. In contrast, we present here that physical forces from motile pathogens during cell entry divert them away from the canonical degradative pathway. This altered fate begins with the force-induced remodeling of the phagocytic synapse formation. We used the parasiteToxoplasma gondiias a model because liveToxoplasmaactively invades host cells using gliding motility. To differentiate the effects of physical forces from virulence factors in phagocytosis, we employed magnetic forces to induce propulsive entry of inactivatedToxoplasmainto macrophages. Experiments and computer simulations show that large propulsive forces hinder productive activation of receptors by preventing their spatial segregation from phosphatases at the phagocytic synapse. Consequently, the inactivated parasites are engulfed into vacuoles that fail to mature into degradative units, similar to the live motile parasite’s intracellular pathway. Using yeast cells and opsonized beads, we confirmed that this mechanism is general, not specific to the parasite used. These results reveal new aspects of immune evasion by demonstrating how physical forces during active cell entry, independent of virulence factors, enable pathogens to circumvent phagolysosomal degradation.more » « less
-
Boyle, Jon P. (Ed.)ABSTRACT Mitogen-activated protein kinases (MAPKs) are a conserved family of protein kinases that regulate signal transduction, proliferation, and development throughout eukaryotes. The apicomplexan parasite Toxoplasma gondii expresses three MAPKs. Two of these, extracellular signal-regulated kinase 7 (ERK7) and MAPKL1, have been implicated in the regulation of conoid biogenesis and centrosome duplication, respectively. The third kinase, MAPK2, is specific to and conserved throughout the Alveolata, although its function is unknown. We used the auxin-inducible degron system to determine phenotypes associated with MAPK2 loss of function in Toxoplasma . We observed that parasites lacking MAPK2 failed to duplicate their centrosomes and therefore did not initiate daughter cell budding, which ultimately led to parasite death. MAPK2-deficient parasites initiated but did not complete DNA replication and arrested prior to mitosis. Surprisingly, the parasites continued to grow and replicate their Golgi apparatus, mitochondria, and apicoplasts. We found that the failure in centrosome duplication is distinct from the phenotype caused by the depletion of MAPKL1. As we did not observe MAPK2 localization at the centrosome at any point in the cell cycle, our data suggest that MAPK2 regulates a process at a distal site that is required for the completion of centrosome duplication and the initiation of parasite mitosis. IMPORTANCE Toxoplasma gondii is a ubiquitous intracellular protozoan parasite that can cause severe and fatal disease in immunocompromised patients and the developing fetus. Rapid parasite replication is critical for establishing a productive infection. Here, we demonstrate that a Toxoplasma protein kinase called MAPK2 is conserved throughout the Alveolata and essential for parasite replication. We found that parasites lacking MAPK2 protein were defective in the initiation of daughter cell budding and were rendered inviable. Specifically, T. gondii MAPK2 (TgMAPK2) appears to be required for centrosome replication at the basal end of the nucleus, and its loss causes arrest early in parasite division. MAPK2 is unique to the Alveolata and not found in metazoa and likely is a critical component of an essential parasite-specific signaling network.more » « less
-
ABSTRACT The African trypanosome has evolved mechanisms to adapt to changes in nutrient availability that occur during its life cycle. During transition from mammalian blood to insect vector gut, parasites experience a rapid reduction in environmental glucose. Here we describe how pleomorphic parasites respond to glucose depletion with a focus on parasite changes in energy metabolism and growth. Long slender bloodstream form parasites were rapidly killed as glucose concentrations fell, while short stumpy bloodstream form parasites persisted to differentiate into the insect-stage procyclic form parasite. The rate of differentiation was lower than that triggered by other cues but reached physiological rates when combined with cold shock. Both differentiation and growth of resulting procyclic form parasites were inhibited by glucose and nonmetabolizable glucose analogs, and these parasites were found to have upregulated amino acid metabolic pathway component gene expression. In summary, glucose transitions from the primary metabolite of the blood-stage infection to a negative regulator of cell development and growth in the insect vector, suggesting that the hexose is not only a key metabolic agent but also an important signaling molecule. IMPORTANCE As the African trypanosome Trypanosoma brucei completes its life cycle, it encounters many different environments. Adaptation to these environments includes modulation of metabolic pathways to parallel the availability of nutrients. Here, we describe how the blood-dwelling life cycle stages of the African trypanosome, which consume glucose to meet their nutritional needs, respond differently to culture in the near absence of glucose. The proliferative long slender parasites rapidly die, while the nondividing short stumpy parasite remains viable and undergoes differentiation to the next life cycle stage, the procyclic form parasite. Interestingly, a sugar analog that cannot be used as an energy source inhibited the process. Furthermore, the growth of procyclic form parasite that resulted from the event was inhibited by glucose, a behavior that is similar to that of parasites isolated from tsetse flies. Our findings suggest that glucose sensing serves as an important modulator of nutrient adaptation in the parasite.more » « less
An official website of the United States government

