skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An intrinsic oscillator drives the blood stage cycle of the malaria parasite Plasmodium falciparum
The blood stage of the infection of the malaria parasite Plasmodium falciparum exhibits a 48-hour developmental cycle that culminates in the synchronous release of parasites from red blood cells, which triggers 48-hour fever cycles in the host. This cycle could be driven extrinsically by host circadian processes or by a parasite-intrinsic oscillator. To distinguish between these hypotheses, we examine the P. falciparum cycle in an in vitro culture system and show that the parasite has molecular signatures associated with circadian and cell cycle oscillators. Each of the four strains examined has a different period, which indicates strain-intrinsic period control. Finally, we demonstrate that parasites have low cell-to-cell variance in cycle period, on par with a circadian oscillator. We conclude that an intrinsic oscillator maintains Plasmodium ’s rhythmic life cycle.  more » « less
Award ID(s):
1839288
PAR ID:
10186079
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Science
Volume:
368
Issue:
6492
ISSN:
0036-8075
Page Range / eLocation ID:
754 to 759
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. During infections with the malaria parasitesPlasmodium vivax, patients exhibit rhythmic fevers every 48 h. These fever cycles correspond with the time the parasites take to traverse the intraerythrocytic cycle (IEC). In otherPlasmodiumspecies that infect either humans or mice, the IEC is likely guided by a parasite-intrinsic clock [Rijo-Ferreiraet al.,Science368, 746–753 (2020); Smithet al.,Science368, 754–759 (2020)], suggesting that intrinsic clock mechanisms may be a fundamental feature of malaria parasites. Moreover, becausePlasmodiumcycle times are multiples of 24 h, the IECs may be coordinated with the host circadian clock(s). Such coordination could explain the synchronization of the parasite population in the host and enable alignment of IEC and circadian cycle phases. We utilized an ex vivo culture of whole blood from patients infected withP. vivaxto examine the dynamics of the host circadian transcriptome and the parasite IEC transcriptome. Transcriptome dynamics revealed that the phases of the host circadian cycle and the parasite IEC are correlated across multiple patients, showing that the cycles are phase coupled. In mouse model systems, host–parasite cycle coupling appears to provide a selective advantage for the parasite. Thus, understanding how host and parasite cycles are coupled in humans could enable antimalarial therapies that disrupt this coupling. 
    more » « less
  2. Weiss, Louis M. (Ed.)
    ABSTRACT Gametocytes of the malaria parasite Plasmodium are taken up by the mosquito vector with an infectious blood meal, representing a critical stage for parasite transmission. Calcium-independent protein kinases (CDPKs) play key roles in calcium-mediated signaling across the complex life cycle of the parasite. We sought to understand their role in human parasite transmission from the host to the mosquito vector and thus investigated the role of the human-infective parasite Plasmodium falciparum CDPK4 in the parasite life cycle. P. falciparum cdpk4 − parasites created by targeted gene deletion showed no effect in blood stage development or gametocyte development. However, cdpk4 − parasites showed a severe defect in male gametogenesis and the emergence of flagellated male gametes. To understand the molecular underpinnings of this defect, we performed mass spectrometry-based phosphoproteomic analyses of wild-type and Plasmodium falciparum cdpk4 − late gametocyte stages to identify key CDPK4-mediated phosphorylation events that may be important for the regulation of male gametogenesis. We further employed in vitro assays to identify these putative substrates of Plasmodium falciparum CDPK4. This indicated that CDPK4 regulates male gametogenesis by directly or indirectly controlling key essential events, such as DNA replication, mRNA translation, and cell motility. Taken together, our work demonstrates that PfCDPK4 is a central kinase that regulates exflagellation and thereby is critical for parasite transmission to the mosquito vector. IMPORTANCE Transmission of the malaria parasite to the mosquito vector is critical for the completion of the sexual stage of the parasite life cycle and is dependent on the release of male gametes from the gametocyte body inside the mosquito midgut. In the present study, we demonstrate that PfCDPK4 is critical for male gametogenesis and is involved in phosphorylation of proteins essential for male gamete emergence. Targeting PfCDPK4 and its substrates may provide insights into achieving effective malaria transmission-blocking strategies. 
    more » « less
  3. Successful infectious disease interventions can result in large reductions in parasite prevalence. Such demographic change has fitness implications for individual parasites and may shift the parasite’s optimal life history strategy. Here, we explore whether declining infection rates can alter Plasmodium falciparum ’s investment in sexual versus asexual growth. Using a multiscale mathematical model, we demonstrate how the proportion of polyclonal infections, which decreases as parasite prevalence declines, affects the optimal sexual development strategy: Within-host competition in multiclone infections favors a greater investment in asexual growth whereas single-clone infections benefit from higher conversion to sexual forms. At the same time, drug treatment also imposes selection pressure on sexual development by shortening infection length and reducing within-host competition. We assess these models using 148 P. falciparum parasite genomes sampled in French Guiana over an 18-y period of intensive intervention (1998 to 2015). During this time frame, multiple public health measures, including the introduction of new drugs and expanded rapid diagnostic testing, were implemented, reducing P. falciparum malaria cases by an order of magnitude. Consistent with this prevalence decline, we see an increase in the relatedness among parasites, but no single clonal background grew to dominate the population. Analyzing individual allele frequency trajectories, we identify genes that likely experienced selective sweeps. Supporting our model predictions, genes showing the strongest signatures of selection include transcription factors involved in the development of P. falciparum ’s sexual gametocyte form. These results highlight how public health interventions impose wide-ranging selection pressures that affect basic parasite life history traits. 
    more » « less
  4. Abstract Plasmodium species causing malaria in humans are not monophyletic, sharing common ancestors with nonhuman primate parasites. Plasmodium gonderi is one of the few known Plasmodium species infecting African old-world monkeys that are not found in apes. This study reports a de novo assembled P. gonderi genome with complete chromosomes. The P. gonderi genome shares codon usage, syntenic blocks, and other characteristics with the human parasites Plasmodium ovale s.l. and Plasmodium malariae, also of African origin, and the human parasite Plasmodium vivax and species found in nonhuman primates from Southeast Asia. Using phylogenetically aware methods, newly identified syntenic blocks were found enriched with conserved metabolic genes. Regions outside those blocks harbored genes encoding proteins involved in the vertebrate host-Plasmodium relationship undergoing faster evolution. Such genome architecture may have facilitated colonizing vertebrate hosts. Phylogenomic analyses estimated the common ancestor between P. vivax and an African ape parasite P. vivax-like, within the Asian nonhuman primates parasites clade. Time estimates incorporating P. gonderi placed the P. vivax and P. vivax-like common ancestor in the late Pleistocene, a time of active migration of hominids between Africa and Asia. Thus, phylogenomic and time-tree analyses are consistent with an Asian origin for P. vivax and an introduction of P. vivax-like into Africa. Unlike other studies, time estimates for the clade with Plasmodium falciparum, the most lethal human malaria parasite, coincide with their host species radiation, African hominids. Overall, the newly assembled genome presented here has the quality to support comparative genomic investigations in Plasmodium. 
    more » « less
  5. Abstract Haemosporidians constitute a monophyletic group of vector-borne parasites that infect a wide range of vertebrate hosts, including Neotropical lizards. The remarkable diversity of these host-parasite associations and inadequate research on certain parasite groups have resulted in controversial haemosporidian taxonomy. Herein, we rediscover erythrocytic and non-erythrocytic haemosporidians infecting golden tegus (Tupinambis teguixin) from Brazil and Colombia. The erythrocyte-inhabiting parasite belongs toPlasmodiumsp., and the non-erythrocytic form was identified asSaurocytozoon tupinambi, previously attributed to the Family Leucocytozoidae. These non-pigmented haemosporidian parasites do not multiply in the blood. The relationships between theSaurocytozoonand Leucocytozoidae species were discussed for many years, especially during the 1970s. However, cytochrome b (cytb) sequences and the mitochondrial genomes recovered for this species strongly support classifying this parasite as aPlasmodiumtaxon. Therefore, we proposed a new combination for this parasite,Plasmodium(Saurocytozoon)tupinambicomb. nov., whereSaurocytozoonis retained as a subgenus due to its distinct morphology. These results reinforce that a broader definition of Plasmodiidae must include saurian parasites that develop non-pigmented leucocytozoid-like gametocytes. 
    more » « less