Abstract We develop a general compactification framework to facilitate analysis of nonautonomous ODEs where nonautonomous terms decay asymptotically. The strategy is to compactify the problem: the phase space is augmented with a bounded but open dimension and then extended at one or both ends by gluing in flow-invariant subspaces that carry autonomous dynamics of the limit systems from infinity. We derive the weakest decay conditions possible for the compactified system to be continuously differentiable on the extended phase space. This enables us to use equilibria and other compact invariant sets of the limit systems from infinity to analyze the original nonautonomous problem in the spirit of dynamical systems theory. Specifically, we prove that solutions of interest are contained in unique invariant manifolds of saddles for the limit systems when embedded in the extended phase space. The uniqueness holds in the general case, that is even if the compactification gives rise to a centre direction and the manifolds become centre or centre-stable manifolds. A wide range of problems including pullback attractors, rate-induced critical transitions (R-tipping) and nonlinear wave solutions fit naturally into our framework, and their analysis can be greatly simplified by the compactification.
more »
« less
Solving Nonlinear Ordinary Differential Equations Using the Invariant Manifolds and Koopman Eigenfunctions
Nonlinear ODEs can rarely be solved analytically. Koopman operator theory provides a way to solve two-dimensional nonlinear systems, under suitable restrictions, by mapping nonlinear dynamics to a linear space using Koopman eigenfunctions. Unfortunately, finding such eigenfunctions is difficult. We introduce a method for constructing Koopman eigenfunctions from a two-dimensional nonlinear ODE’s one-dimensional invariant manifolds. This method, when successful, allows us to find analytical solutions for autonomous, nonlinear systems. Previous data-driven methods have used Koopman theory to construct local Koopman eigenfunction approximations valid in different regions of phase space; our method finds analytic Koopman eigenfunctions that are exact and globally valid. We demonstrate our Koopman method of solving nonlinear systems on one-dimensional and two-dimensional ODEs. The nonlinear examples considered have simple expressions for their codimension-1 invariant manifolds which produce tractable analytical solutions. Thus our method allows for the construction of analytical solutions for previously unsolved ODEs. It also highlights the connection between invariant manifolds and eigenfunctions in nonlinear ODEs and presents avenues for extending this method to solve more nonlinear systems.
more »
« less
- Award ID(s):
- 2103239
- PAR ID:
- 10656676
- Publisher / Repository:
- SIAM Journal on Applied Dynamical Systems
- Date Published:
- Journal Name:
- SIAM Journal on Applied Dynamical Systems
- Volume:
- 23
- Issue:
- 1
- ISSN:
- 1536-0040
- Page Range / eLocation ID:
- 924 to 960
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The dynamic complexity of robots and mechatronic systems often pertains to the hybrid nature of dynamics, where governing equations consist of heterogenous equations that are switched depending on the state of the system. Legged robots and manipulator robots experience contact-noncontact discrete transitions, causing switching of governing equations. Analysis of these systems have been a challenge due to the lack of a global, unified model that is amenable to analysis of the global behaviors. Composition operator theory has the potential to provide a global, unified representation by converting them to linear dynamical systems in a lifted space. The current work presents a method for encoding nonlinear heterogenous dynamics into a high dimensional space of observables in the form of Koopman operator. First, a new formula is established for representing the Koopman operator in a Hilbert space by using inner products of observable functions and their composition with the governing state transition function. This formula, called Direct Encoding, allows for converting a class of heterogenous systems directly to a global, unified linear model. Unlike prevalent data-driven methods, where results can vary depending on numerical data, the proposed method is globally valid, not requiring numerical simulation of the original dynamics. A simple example validates the theoretical results, and the method is applied to a multi-cable suspension system.more » « less
-
We derive a simple Poisson structure in the space of Fourier modes for the vorticity formulation of the Euler equations on a three-dimensional periodic domain. This allows us to analyse the structure of the Euler equations using a Hamiltonian framework. The Poisson structure is valid on the divergence free subspace only, and we show that using a projection operator it can be extended to be valid in the full space. We then restrict the simple Poisson structure to the divergence-free subspace on which the dynamics of the Euler equations take place, reducing the size of the system of ODEs by a third. The projected and the restricted Poisson structures are shown to have the helicity as a Casimir invariant. We conclude by showing that periodic shear flows in three dimensions are equilibria that correspond to singular points of the projected Poisson structure, and hence that the usual approach to study their nonlinear stability through the Energy-Casimir method fails.more » « less
-
null (Ed.)Koopman decomposition is a nonlinear generalization of eigen-decomposition, and is being increasingly utilized in the analysis of spatio-temporal dynamics. Well-known techniques such as the dynamic mode decomposition (DMD) and its linear variants provide approximations to the Koopman operator, and have been applied extensively in many fluid dynamic problems. Despite being endowed with a richer dictionary of nonlinear observables, nonlinear variants of the DMD, such as extended/kernel dynamic mode decomposition (EDMD/KDMD) are seldom applied to large-scale problems primarily due to the difficulty of discerning the Koopman-invariant subspace from thousands of resulting Koopman eigenmodes. To address this issue, we propose a framework based on a multi-task feature learning to extract the most informative Koopman-invariant subspace by removing redundant and spurious Koopman triplets. In particular, we develop a pruning procedure that penalizes departure from linear evolution. These algorithms can be viewed as sparsity-promoting extensions of EDMD/KDMD. Furthermore, we extend KDMD to a continuous-time setting and show a relationship between the present algorithm, sparsity-promoting DMD and an empirical criterion from the viewpoint of non-convex optimization. The effectiveness of our algorithm is demonstrated on examples ranging from simple dynamical systems to two-dimensional cylinder wake flows at different Reynolds numbers and a three-dimensional turbulent ship-airwake flow. The latter two problems are designed such that very strong nonlinear transients are present, thus requiring an accurate approximation of the Koopman operator. Underlying physical mechanisms are analysed, with an emphasis on characterizing transient dynamics. The results are compared with existing theoretical expositions and numerical approximations.more » « less
-
Modularized Koopman bilinear form (M-KBF) is presented to model and predict the transient dynamics of microgrids in the presence of disturbances. As a scalable data-driven approach, M-KBF divides the identification and prediction of the high-dimensional nonlinear system into the individual study of subsystems, and thus, alleviates the difficulty of intensively handling high volume data and overcomes the curse of dimensionality. For each subsystem, Koopman bilinear form is established to efficiently identify its model by identifying isotypic eigenfunctions via the Extended Dynamic Mode Decomposition (EDMD) method with an eigenvalue-based order truncation. Extensive tests show that M-KBF can provide accurate transient dynamics prediction for the nonlinear microgrids and verify the plug-and-play modeling and prediction function, which offers a potent tool for identifying high-dimensional systems with reconfiguration feature. The modularity feature of M-KBF enables the provision of fast and precise prediction for the power grid operation and control, paving the way towards online applications.more » « less
An official website of the United States government

