skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 2, 2026

Title: Spotlighting Three Critical Themes from Computing Students in a Growth Mindset Program
This full research paper reports findings from a multitiered intervention focused on developing growth mindset among talented, low-income undergraduate students attending a College of Computing in the northeastern United States. Rooted in theories of intelligence, a growth mindset views intelligence and skills as being developed through persistent practice and learning from mistakes, while a fixed mindset sees skills as set at birth, never evolving, with mistakes becoming insurmountable barriers to success. The program in this study was designed to develop a community of learners with a shared framework for responding to academic challenges, to combat imposter syndrome, and to support persistence in their major and enter the workforce. During their first two years as college students, three undergraduate cohorts (totaling 32 participants) experienced four semesters of growth-mindset faculty mentoring concurrent with a community-building, growth mindset-focused seminar, and in their first year experienced two growth-mindset infused introductory programming courses. To address the research question, “How do talented, financially disadvantaged computing students understand growth and fixed mindsets?”, we report on qualitative data collected each semester, for each cohort. Focus group transcripts and individual written responses were thematically analyzed, drawing from a priori frameworks (social constructivism and self-efficacy in the context of mindset theory) and emergent codes to develop categories. Discussion is presented using frames of self-determination theory and positioning theory. We discuss the impact of these findings on students, implications for growth mindset interventions and provide guidance for using educational and developmental theories in the context of studies of growth mindset.  more » « less
Award ID(s):
2029798
PAR ID:
10656720
Author(s) / Creator(s):
; ;
Publisher / Repository:
IEEE Frontiers in Education
Date Published:
Subject(s) / Keyword(s):
growth mindset fixed mindset communities of practice self-determination theory self-efficacy positioning theory computing education
Format(s):
Medium: X
Location:
Nashville, TN USA
Sponsoring Org:
National Science Foundation
More Like this
  1. This innovative practice full paper examines mindset understandings of three cohorts of first-year student scholars in a College of Computing at a private technical Carnegie-classified Doctoral University in the northeastern United States. Grounded in theories of intelligence, a growth mindset posits that intelligence and skills can be developed through continued practice and learning, while a fixed mindset situates one with the skills they have at birth, never to evolve or grow. Thirty-two undergraduate students across three years (10 students in year one, cohort one; 10 students in year two, cohort two; and 12 students in year three, cohort three) participated in a holistic growth mindset program that included three pillars: (a) faculty-student mentoring infused with growth mindset, (b) growth-mindset augmentations to the introductory programming course and (c) a growth mindset-scholar seminar - a series of meetings where each cohort met as a group to discuss and practice activating a growth mindset. Previous work with students has focused on more limited growth mindset interventions rather than a holistic approach. Prior to the scholars arriving on campus, the faculty involved in each of the pillars were part of a Community of Practice to learn about and activate their own growth mindset. At the end of their first semester in the project, each of the student cohorts participated in a focus group to learn about their understanding and application of growth and fixed mindset. We report findings from the student scholar data after one semester of participating in the three programmatic pillars in the context of growth mindset: mentoring, programming instruction, and the scholar seminar. Summary findings from the student perspectives are described including the use of illustrative quotes, in the students' own words, serving as a powerful reminder of the importance of growth mindset and relationship building. This has implications for addressing mindset in the future by considering how the innovative practice of embedding a growth mindset holistically into mentoring, instruction and a student seminar can provide support for students that standalone interventions cannot. 
    more » « less
  2. Undergraduate programs in computer science (CS) face high dropout rates, and many students struggle while learning to program. Studies show that perceived programming ability is a significant factor in students' decision to major in CS. Fortunately, psychology research shows that promoting the growth mindset, or the belief that intelligence grows with effort, can improve student persistence and performance. However, mindset interventions have been less successful in CS than in other domains. We conducted a small-scale interview study to explore how CS students talk about their intelligence, mindsets, and programming behaviors. We found that students' mindsets rarely aligned with definitions in the literature; some present mindsets that combine fixed and growth attributes, while others behave in ways that do not align with their mindsets. We also found that students frequently evaluate their self-efficacy by appraising their programming intelligence, using surprising criteria like typing speed and ease of debugging to measure ability. We conducted a survey study with 103 students to explore these self-assessment criteria further, and found that students use varying and conflicting criteria to evaluate intelligence in CS. We believe the criteria that students choose may interact with mindsets and impact their motivation and approach to programming, which could help explain the limited success of mindset interventions in CS. 
    more » « less
  3. The goal of this project is to better understand the beliefs that undergraduate students hold about their own intelligence and how these beliefs change during their undergraduate engineering education. The research team has used the theoretical framework established by Carol Dweck on Mindset and how different fixed and growth mindsets affect success. Fixed mindset individuals believe that their intelligence is an unchanging trait, while people with a growth mindset believe that through effort they can grow and develop greater intelligence. Prior researchers have shown that individuals with a growth mindset respond to challenges with higher levels of persistence, are more interested in improving upon past failures, and value criticism and effort more than those with a fixed mindset. The team developed an interview protocol from the theoretical framework. Then the team piloted the protocol and subsequently modified the protocol multiple times to ensure that the interviews provided rich qualitative data. Analytic memos were used to analyze and modify the piloted interview protocols. Once the final protocol was established, first-year and senior students were recruited to provide cross-sectional insight. The team also recruited using purposeful sampling to ensure that women and underrepresented minorities were included. To date, 19 interviews have been conducted with the final protocol. Of these interviews, four have been coded in detail using the “Attitudes, Values, and Beliefs” coding system. A codebook has also been started to categorize and interconnect the themes in the interview transcripts. This paper provides details of the protocol and coding process as well as preliminary findings on the themes extracted from the student interviews. 
    more » « less
  4. While many previous studies have indicated that encouraging a growth mindset can improve student learning outcomes, this conclusion’s applicability to college-level astronomy classrooms remains poorly understood owing to the variation in students’ overall and domain-specific learning attitudes. To address this, we surveyed undergraduate students in an introductory astronomy class about their attitudes towards learning astronomy over the course of five semesters. Overall, students felt an affinity for astronomy, felt moderately competent, perceived astronomy to be intermediate in terms of difficulty, and agreed strongly with standard statements reflecting a “growth mindset,” i.e., the belief that intelligence is malleable rather than fixed from birth. Their responses were stable over the course of the semester and did not appear to depend strongly on student demographics. The unexpected start of the COVID-19 pandemic and the associated shift to all-virtual learning correlated with a drop in their affinity for astronomy, a small decrease in their perceived competence, and an increase in the perceived difficulty of the topic. Their overall learning mindset showed negligible change during this time, emphasizing the stability of their belief in a growth mindset as compared to other measured learning attitudes. However, more nuanced questions about their behaviors and interpretations in the classroom, about how they felt “in the moment,” and about what factors were most important for their success in the class revealed significantly lower alignment with a growth mindset. This suggests that while introductory astronomy students may believe that they have a growth mindset, this mindset is not necessarily reflected in their self-reported classroom behaviors or measured responses to actual learning challenges. Published by the American Physical Society2024 
    more » « less
  5. Metacognition and self-regulation are important skills for successful learning and have been discussed and researched extensively in the general education literature for several decades. More recently, there has been growing interest in understanding how metacognitive and self-regulatory skills contribute to student success in the context of computing education. This paper presents a thorough systematic review of metacognition and self-regulation work in the context of computer programming and an in-depth discussion of the theories that have been leveraged in some way. We also discuss several prominent metacognitive and self-regulation theories from the literature outside of computing education – for example, from psychology and education – that have yet to be applied in the context of programming education. In our investigation, we built a comprehensive corpus of papers on metacognition and self-regulation in programming education, and then employed backward snowballing to provide a deeper examination of foundational theories from outside computing education, some of which have been explored in programming education, and others that have yet to be but hold much promise. In addition, we make new observations about the way these theories are used by the computing education community, and present recommendations on how metacognition and self-regulation can help inform programming education in the future. In particular, we discuss exemplars of studies that have used existing theories to support their design and discussion of results as well as studies that have proposed their own metacognitive theories in the context of programming education. Readers will also find the article a useful resource for helping students in programming courses develop effective strategies for metacognition and self-regulation. 
    more » « less