skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Picking first arrivals in hydroacoustic seismograms from MERMAID floats
Floating seismometers (‘MERMAIDs’) operating in the noisy environment of the world’s oceans pose a challenge for picking the time of earthquake first arrivals. We report on an experiment to estimate the errors in picked arrivals from 49 MERMAIDS operating in the South Pacific, using two independent strategies. For 15 events, the same arrivals were redundandly picked by several analysts, allowing for a direct estimate of error distributions. Standard errors in times from MERMAID seismograms vary from 0.2 s for close events at mantle depths in the Kermadec subduction zone to more than 2 s for crustal events at large epicentral distance. In a second experiment we analysed the a posteriori misfits after tomographically inverting all events. The residual traveltime misfit is consistent with the error estimates from the first experiment, but also shows inconsistencies with arrival times from the ISC-EHB and NEIC catalogues, which we attribute to errors in the published hypocentres and/or origin times.  more » « less
Award ID(s):
2341811
PAR ID:
10656797
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Seismica
Date Published:
Journal Name:
Seismica
Volume:
4
Issue:
1
ISSN:
2816-9387
Page Range / eLocation ID:
1-12
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Seismograms are convolution results between seismic sources and the media that seismic waves propagate through, and, therefore, the primary observations for studying seismic source parameters and the Earth interior. The routine earthquake location and travel-time tomography rely on accurate seismic phase picks (e.g., P and S arrivals). As data increase, reliable automated seismic phase-picking methods are needed to analyze data and provide timely earthquake information. However, most traditional autopickers suffer from low signal-to-noise ratio and usually require additional efforts to tune hyperparameters for each case. In this study, we proposed a deep-learning approach that adapted soft attention gates (AGs) and recurrent-residual convolution units (RRCUs) into the backbone U-Net for seismic phase picking. The attention mechanism was implemented to suppress responses from waveforms irrelevant to seismic phases, and the cooperating RRCUs further enhanced temporal connections of seismograms at multiple scales. We used numerous earthquake recordings in Taiwan with diverse focal mechanisms, wide depth, and magnitude distributions, to train and test our model. Setting the picking errors within 0.1 s and predicted probability over 0.5, the AG with recurrent-residual convolution unit (ARRU) phase picker achieved the F1 score of 98.62% for P arrivals and 95.16% for S arrivals, and picking rates were 96.72% for P waves and 90.07% for S waves. The ARRU phase picker also shown a great generalization capability, when handling unseen data. When applied the model trained with Taiwan data to the southern California data, the ARRU phase picker shown no cognitive downgrade. Comparing with manual picks, the arrival times determined by the ARRU phase picker shown a higher consistency, which had been evaluated by a set of repeating earthquakes. The arrival picks with less human error could benefit studies, such as earthquake location and seismic tomography. 
    more » « less
  2. null (Ed.)
    Abstract Local seismic events recorded by the large-N Incorporated Research Institutions for Seismology Community Wavefield Experiment in Oklahoma are used to estimate Moho reflections near the array. For events within 50 km of the center of the array, normal moveout corrections and receiver stacking are applied to identify the PmP and SmS Moho reflections on the vertical and transverse components. Corrections for the reported focal depths are applied to a uniform event depth. To stack signals from multiple events, further static corrections of the envelopes of the Moho reflected arrivals from the individual event stacks are applied. The multiple-event stacks are then used to estimate the pre-critical PmP and SmS arrivals, and an average Poisson’s ratio of 1.77±0.02 was found for the crust near the array. Using a modified Oklahoma Geological Survey (OGS) velocity model with this Poisson’s ratio, the time-to-depth converted PmP and SmS arrivals resulted in a Moho depth of 41±0.6  km. The modeling of wide-angle Moho reflections for selected events at epicenter-to-station distances of 90–135 km provides additional constraints, and assuming the modified OGS model, a Moho depth of 40±1  km was inferred. The difference between the pre-critical and wide-angle Moho estimates could result from some lateral variability between the array and the wide-angle events. However, both estimates are slightly shallower than the original OGS model Moho depth of 42 km, and this could also result from a somewhat faster lower crust. This study shows that local seismic events, including induced events, can be utilized to estimate properties and structure of the crust, which, in turn, can be used to better understand the tectonics of a given region. The recording of local seismicity on large-N arrays provides increased lateral phase coherence for the better identification of precritical and wide-angle reflected arrivals. 
    more » « less
  3. Abstract Floating seismographs (Mobile Earthquake Recorder in Marine Areas by Independent Divers project “MERMAIDs”) record the data at depth at a location that is determined by linearly interpolating between the Global Positioning System positions when surfacing, assuming a constant drift velocity at depth. We study the influence of a changing drift velocity between surfacings and of a curvature of the drift trajectory. We separate localizations that directly follow a triggered ascent from those that are interpolated later. The first ones have on average a mislocation of 99 m due to curvature of the drift, against 685 m for interpolated localizations. Mislocations due to nonconstant velocity are somewhat smaller. Equivalent time errors have a distribution with heavier tails than Gaussian. The halfwidth of the 95% interval for equivalent arrival-time errors is smaller than 27 ms if the seismogram recording triggers an immediate ascent. If the recording is transmitted at a later surfacing, the interpolation is less precise with a 95% confidence interval halfwidth of 222 ms, but 67% of the errors are below 44 ms. We conclude that the localization errors have no significant impact on the accuracy of picked arrival times. 
    more » « less
  4. The LHC Run III will be a crucial run for the two LHC forward experiments: LHCf and FASER. In particular, Run III will be the last run where the LHCf detector can operate, and the first run of the new FASER project. The LHCf experiment is dedicated to precise measurements of forward production, necessary to tune hadronic interaction models employed in cosmic-ray physics. In Run III, the experiment will accomplish two fundamental goals: operating in p-p collisions at s√= s = 14 TeV, it will acquire a statistics that is ten times larger respect to Run II, in order to have precise measurements of π0 π 0 production; operating in high energy p-O and O-O collisions, it will measure forward production in a configuration that is very similar to the first interaction of an Ultra High Energy Cosmic Ray with an atmospheric nucleus. The FASER experiment is dedicated to the search of new weakly-interacting light particles thanks to a forward detector with proper shielding from Standard Model background. In Run III, it will be able to search for new particles with a good sensitivity, which can be strongly improved after an upgrade before Run IV. In addition, thanks to the dedicated FASERν detector, it will measure neutrino production at a collider for the first time. In this contribution, we discuss the main results expected from the LHCf and FASER experiments in Run III, highlighting their fundamental contribution in research fields that are not accessible to the four large LHC experiments. 
    more » « less
  5. This paper studies the input-queued switch operating under the MaxWeight algorithm when the arrivals are according to a Markovian process. We exactly characterize the heavy-traffic scaled mean sum queue length in the heavy-traffic limit, and show that it is within a factor of less than 2 from a universal lower bound. Moreover, we obtain lower and upper bounds that are applicable in all traffic regimes and become tight in the heavy-traffic regime. We obtain these results by generalizing the drift method recently developed for the case of independent and identically distributed arrivals to the case of Markovian arrivals. We illustrate this generalization by first obtaining the heavy-traffic mean queue length and its distribution in a single-server queue under Markovian arrivals and then applying it to the case of an input-queued switch. The key idea is to exploit the geometric mixing of finite-state Markov chains, and to work with a time horizon that is chosen so that the error due to mixing depends on the heavy-traffic parameter. 
    more » « less