skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 8, 2026

Title: Lattice Boltzmann Simulation of The Effects of Nanobubble Morphology and Surface Nanofeatures on Superheat-Driven Nucleation and Bubble Growth
ABSTRACT Bubble nucleation associated with nucleate boiling at superheated surfaces has typically focused on surfaces with features on the order of microns and bubble embryos with comparable interface radii of curvature. For such surfaces the vapor embryo growth or collapse behavior is consistent with surface tension and wetting forces being confined to the contact line region at the surface. In a pure fluid saturating a superheated nanopororus layer, random density fluctuations can lead to the formation of nanoscale bubble embryos. Said fluctuations increase as the liquid is superheated and can lead to macroscopic nucleation. Entrapment of gas when nanostructured surfaces are flooded with liquid can also result in nanoscale bubble embryos in or near the porous layer. For highly wetted nanostructured surfaces, the fluid-to-surface attractive forces are strong over much of a nanobubble embryo, and the critical bubble size that results in spontaneous bubble growth is affected more strongly by surface forces. A Lattice Boltzmann model (LBM) is used to simulate the time evolution behavior of bubble embryos, with radii ranging from 5 to 15 nanometers, close to or within nanoscale interstitial spaces of a nanostructured surface. Single vapor nanobubbles are seeded in surrounding fluid with varying degrees of contact with solid surfaces to simulate smooth or nanostructured surfaces. The effects of varying adsorption coefficient (which dictates contact angle), varying bubble surface radius of curvature, mean distance of wall nanostructures from the embryo, and varying degrees of enclosure of the embryo by surrounding wall structures are explored. The simulation results indicate that the critical radius is largely impacted by the proximity of nanostructures, demonstrating how the fluid-surface forces affect the stability of a vapor embryo. The results suggest that the hydrophilic nature of the surfaces contributes to the suppression in the onset of nucleate boiling which is often seen in hydrophilic nanoporous layers. The implications of these results on convective and nucleate boiling at and within nanostructured surfaces are also discussed.  more » « less
Award ID(s):
2228373
PAR ID:
10656811
Author(s) / Creator(s):
;
Publisher / Repository:
ASME
Date Published:
Subject(s) / Keyword(s):
nanobubbles, surface wetting, surface nano morphology, bubble nucleation, onset of nucleate boiling
Format(s):
Medium: X
Location:
Westminster, CO
Sponsoring Org:
National Science Foundation
More Like this
  1. Nanostructured hydrophilic surfaces can enhance boiling processes due to the liquid wicking effect of the small surface structures, but consistently uniform nanoscale interstitial spaces would provide very few heterogeneous nucleation sites, which would require high superheat to activate in, for example, liquid water. Experiments indicate that surfaces of this type initiate onset of nucleate boiling at relatively low superheat levels, implying that larger-than-average interstitial spaces exist, apparently as a consequence of larger micron-scale variations of the surface structure or surface chemistry (wetting) resulting from the fabrication process. The investigation summarized here explores the potential correlation between nanostructured surface morphology variations and onset of nucleation. A zinc oxide nanostructured coating was fabricated on a copper substrate for experiments and analysis in this study. The coated surface was subjected to water droplet deposition tests to evaluate wicking and contact angle, followed by vaporization tests at varying surface superheat levels, and extensive electron microscopy imaging of the surface. The results of the vaporization experiments determined the variation of mean heat flux to the droplet as a function of superheat, and high-speed videos documented the superheat at which onset of nucleate boiling (ONB) occurs and variation of nucleation site density with superheat. Image analysis of the electron microscopy images were used to assess the variability of pore size and surface complexity (entropy) over the surface. By determining macroscope bubble nucleation and boiling performance from measured data and high-speed video records for these surfaces, and simultaneously analyzing the morphology of that surface at the micro/nano scale, our data demonstrates the correlation between surface morphology variations and ONB and nucleate boiling active site density. Specifically, our results indicate that increased irregularities in the surface morphology correspond to enhanced probability of nucleation onset and an increase in active nucleation site density as superheat increases. Our data indicates the range of irregularity number density values (number per square millimeter) and the imperfection features that give rise to consistent low superheat ONB (∼ 15◦𝐶), leads to a robust increase in active site density during nucleate boiling as super heat increases. This information can help guide development of enhanced boiling surfaces by providing insight into the frequency of nanosurface morphology variations, per square millimeter, that enhance nucleation onset while also providing enhanced wicking and low contact angle over most of the surface. The implication of these results for design of different types of enhanced boiling surfaces is also discussed. 
    more » « less
  2. Nanostructured hydrophilic surfaces can enhance boiling processes due to the liquid wicking effect of the small surface structures, but consistently uniform nanoscale interstitial spaces would provide very few heterogeneous nucleation sites, which would require high superheat to activate in, for example, liquid water. Experiments indicate that surfaces of this type initiate onset of nucleate boiling at relatively low superheat levels, implying that larger-than-average interstitial spaces exist, apparently as a consequence of larger micron-scale variations of the surface structure or surface chemistry (wetting) resulting from the fabrication process. The investigation summarized here explores the potential correlation between nanostructured surface morphology variations and onset of nucleation. A zinc oxide nanostructured coating was fabricated on a copper substrate for experiments and analysis in this study. The coated surface was subjected to water droplet deposition tests to evaluate wicking and contact angle, followed by vaporization tests at varying surface superheat levels, and extensive electron microscopy imaging of the surface. The results of the vaporization experiments deter- mined the variation of mean heat flux to the droplet as a function of superheat, and high-speed videos documented the superheat at which onset of nucleate boiling (ONB) occurs and variation of nucleation site density with superheat. Image analysis of the electron microscopy images were used to assess the variability of pore size and surface complexity (entropy) over the surface. By determining macroscope bubble nucleation and boiling performance from measured data and high-speed video records for these surfaces, and simultaneously analyzing the morphology of that surface at the micro/nano scale, our data demonstrates the correlation between surface morphology variations and ONB and nucleate boiling active site density. Specifically, our results indicate that increased irregularities in the surface morphology correspond to enhanced probability of nucleation onset and an increase in active nucleation site density as superheat increases. Our data indicates the range of irregularity number density val- ues (number per square millimeter) and the imperfection features that give rise to consistent low superheat ONB (∼ 15◦𝐶), leads to a robust increase in active site density during nucleate boiling as super heat increases. This information can help guide development of enhanced boiling surfaces by providing insight into the frequency of nanosurface morphology variations, per square millimeter, that enhance nucleation onset while also providing enhanced wicking and low contact angle over most of the surface. The implication of these results for design of different types of enhanced boiling surfaces is also discussed. 
    more » « less
  3. Abstract Nanostructured hydrophilic surfaces can enhance boiling processes due to the liquid wicking effect of the small surface structures. However, consistently uniform nanoscale interstitial spaces would require high superheat to initiate heterogeneous nucleation in the available small cavity spaces. Experimental studies indicate that surfaces of this type initiate onset of nucleate boiling at relatively low superheat levels, implying that significantly larger interstitial spaces exist, apparently as a consequence of the fabrication process. To explore the correlation between nanostructured surface morphology variations and variation of nucleation behavior with superheat, in this study, a zinc oxide nanostructured coating was fabricated on various copper substrates for wetting and droplet vaporization heat transfer experiments and morphology analysis. Our experiments determined the variation of mean droplet heat flux with superheat, and high-speed videos documented how nucleation features varied with superheat. Image analysis of the electron microscopy images was used to assess the variability of pore size and surface complexity (entropy) over the surface. Our data demonstrates the correlation between surface morphology feature distributions and the variation of nucleate boiling active site density with superheat. Specifically, our results indicate that increased availability of larger-scale surface irregularities with low surface entropy corresponds to enhanced probability of nucleation onset and an increase in active nucleation site density as superheat increases. This information can help guide development of enhanced boiling surfaces by providing insight into the nanosurface feature density distributions that enhance nucleation onset while also providing enhanced wicking and low contact angle over most of the surface. 
    more » « less
  4. Abstract We reveal and justify, both theoretically and experimentally, the existence of a unifying criterion of the boiling crisis. This criterion emerges from an instability in the near-wall interactions of bubbles, which can be described as a percolation process driven by three fundamental boiling parameters: nucleation site density, average bubble footprint radius and product of average bubble growth time and detachment frequency. Our analysis suggests that the boiling crisis occurs on a well-defined critical surface in the multidimensional space of these parameters. Our experiments confirm the existence of this unifying criterion for a wide variety of boiling surface geometries and textures, two boiling regimes (pool and flow boiling) and two fluids (water and liquid nitrogen). This criterion constitutes a simple mechanistic rule to predict the boiling crisis, also providing a guiding principle for designing boiling surfaces that would maximize the nucleate boiling performance. 
    more » « less
  5. Extensive research has been conducted to resolve small-scale microlayer and bubble nucleation and departure processes in flow boiling, building on controlled pool boiling studies. Large-scale two-phase flow structures, such as Taylor bubbles, are known to locally modify transport due to their wakes and varying surrounding liquid film thickness. However, the effect of interaction of such large-scale flow processes with bubble nucleation is not yet well characterized. Wakes may drive premature nucleating bubble departure, or conversely, suppress boiling due to boundary layer quenching, significantly affecting overall heat transfer. To explore such phenomena, a two-phase flow boiling visualization facility is developed to collect simultaneous high-speed visualization and infrared (IR) thermal imaging temperature distribution data. The test cell channel is 420 mm long with a 10 mm × 10 mm internal square-cross section. A transparent conductive indium tin oxide (ITO) coated sapphire window serves as a heater and IR interface for measuring the internal wall temperature. The facility is charged with a low boiling point fluid (HFE7000) to reduce uncertainties from heat loss to the laboratory environment. Vertical saturated flow boiling wake-nucleation interaction experiments are performed for varying liquid volume flow rates (0.5 − 1.5 L min-1, laminar-to-turbulent Re) and heat fluxes (0 − 100 kW m-2). Discrete vapor slugs are injected to explore interactions with nucleate boiling processes. By measuring film heater power, surface temperature distributions, and pressures, local instantaneous heat transfer coefficients (HTC) can be obtained. Results will be applied to assess simulations at matched conditions for void fraction, and size statistics of flow structures. 
    more » « less