We interpret the kinematics of the Tangra Yumco (TYC) rift by evaluating spatiotemporal trends in fault displacement, extension onset, and exhumation rates. We present new geologic mapping, U-Pb geochronology, zircon (U-Th)/He (ZHe) thermochronology, and HeFTy thermal modeling results that are critical to testing dynamic models of extension in Tibet. The TYC rift is bounded by two NNE striking (~N10°E-N35°E) high angle (~45-70°) active normal faults that alternate dominance along strike. Footwall granodiorites show foliation, slip lineation, and fault plane striation measurements indicative of northeast directed oblique sinistral-normal slip. In North and South TYC, hanging wall deposits are cut by a series of active high-angle normal faults which likely sole into a master fault at depth, while in central TYC, hanging wall deposits display synthetic graben structures potentially indicative of low-angle faulting. Analysis of ~50 samples collected across key structural relationships in and around TYC yield 14 mean U-Pb dates between ~59-49 Ma and ~190 single-grain ZHe dates between ~60-4 Ma with spatial trends in ZHe data correlating strongly with latitude. Samples from Gangdese latitudes show a concentration of ~28-15 Ma ages, while those north of ~29.8° latitude yield both younger (~9-4 Ma) and older (~59-45 Ma) ages. We interpret (1) Gangdese Range samples reflect exhumation during contraction and uplift along the GCT peaking at ~21-20 Ma, (2) ~9-4 Ma ages reveal extension timing along fault segments experiencing significant rift-related exhumation, and (3) ~59-45 Ma ages represent un-reset or partially-reset samples from fault segments that have experienced lesser magnitudes of rift exhumation. HeFTy thermal models indicate a two-stage cooling history with initial slow cooling followed by accelerated cooling rates in Late Miocene-Pliocene time (~13-4 Ma) consistent with prior results from TYC and other Tibetan rifts. Our data are consistent with a segment linkage fault evolution model for the TYC rift, with underthrusting of Indian lithosphere likely related to the northward acceleration of rifting. Future work will utilize advanced HeFTy modeling including U-Pb and apatite fission track data to further constrain the exhumation history of TYC and test dynamic models of extension for southern Tibet.
more »
« less
This content will become publicly available on October 20, 2026
Exhumation History of Rift-Flank Uplift along the Amagmatic Tanganyika Rift in the East African Rift System, Tanzania
The East African Rift (EAR) system is an important geological analog for continental rifting. Despite decades of research, the precise timing of the onset of rifting and the magnitude of faulting remains opaque. This challenge is compounded in magma-poor segments of the EAR, such as Lake Tanganyika. Lake Tanganyika (LT) is a major geomorphological expression of the western branch of the EAR system. Multiple kinematic studies in LT have focused on the timing, amount of extension, and sediment accumulation within the lake axis. However, constraints on the basin-bounding fault history are needed to fully assess the kinematics of the entire rift transect. This study seeks to provide an age-elevation profile of low-temperature thermochronology data across two transects in the hanging wall blocks on the eastern side of LT (Tanzania). Preliminary thermochronology samples will be collected in the central and northern sections of LT. With an average relief of ~1550 m in the central section (Mahali National Park) and ~850 m in the northern section (Kigoma). The age elevation profiles will enable us to evaluate the onset and magnitude of tectonic exhumation. It has been hypothesized that LT experienced multiple phases of extension in the Mesozoic, Paleogene, and Miocene. Results of the timing of exhumation from the northern and southern sections will support or challenge competing hypotheses of the LT rift evolution. Similar exhumation histories from the two profiles will confirm the model of co-evolution of the LT along its strike, while a different timing of exhumation (younger in the north compared to the central region) will support the long-standing hypothesis of the rift propagation model.
more »
« less
- Award ID(s):
- 2425127
- PAR ID:
- 10656893
- Publisher / Repository:
- Geological Society of America Annual Meeting
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Record of Crustal Thickening and Synconvergent Extension from the Dajiamang Tso Rift, Southern TibetCarosi, Rodolfo; da Costa Campos Neto, Mario; Fossen, Hakkon; Montomoli, Chiara; Simonetti, Matteo; Martinez-Frias, Jesus (Ed.)North-trending rifts throughout south-central Tibet provide an opportunity to study the dynamics of synconvergent extension in contractional orogenic belts. In this study, we present new data from the Dajiamang Tso rift, including quantitative crustal thickness estimates calculated from trace/rare earth element zircon data, U-Pb geochronology, and zircon-He thermochronology. These data constrain the timing and rates of exhumation in the Dajiamang Tso rift and provide a basis for evaluating dynamic models of synconvergent extension. Our results also provide a semi-continuous record of Mid-Cretaceous to Miocene evolution of the Himalayan-Tibetan orogenic belt along the India-Asia suture zone. We report igneous zircon U-Pb ages of ~103 Ma and 70–42 Ma for samples collected from the Xigaze forearc basin and Gangdese Batholith/Linzizong Formation, respectively. Zircon-He cooling ages of forearc rocks in the hanging wall of the Great Counter thrust are ~28 Ma, while Gangdese arc samples in the footwalls of the Dajiamang Tso rift are 16–8 Ma. These data reveal the approximate timing of the switch from contraction to extension along the India-Asia suture zone (minimum 16 Ma). Crustal-thickness trends from zircon geochemistry reveal possible crustal thinning (to ~40 km) immediately prior to India-Eurasia collision onset (58 Ma). Following initial collision, crustal thickness increases to 50 km by 40 Ma with continued thickening until the early Miocene supported by regional data from the Tibetan Magmatism Database. Current crustal thickness estimates based on geophysical observations show no evidence for crustal thinning following the onset of E–W extension (~16 Ma), suggesting that modern crustal thickness is likely facilitated by an underthrusting Indian lithosphere balanced by upper plate extension.more » « less
-
Studies on the crustal structure of the Turkana Rift Zone (TRZ) in northern Kenya and southern Ethiopia began in the early 1980s. Initially driven by hydrocarbon exploration, these studies revealed that the rift zone comprises multiple fault-bounded basins ranging in age from the Eocene to the present. They also showed that the area hosts the intersection zone of the N-S trending basins of the Cenozoic East African Rift System (EARS) and the NW-SE-trending Mesozoic-Paleogene Central African Rift System (CARS). However, early seismic reflection and borehole data were mostly concentrated in the southern TRZ, resulting in limited subsurface data for its northern counterpart. This data gap has led to an incomplete understanding of the rift zone's regional crustal structure and how earlier CARS-related rifting influenced the development of the present-day EARS. Here, we leverage newly collected onshore and offshore subsurface industry datasets in the TRZ, spanning a 300 x 150 km region, to characterize the TRZ's crustal structure. We map several key subsurface horizons using a dense grid of 363 2-D seismic reflection profiles, which we tie to surface geology and borehole datasets. Mapping the acoustic basement produced new structure contour maps that provide high-resolution constraints on the TRZ’s crustal structure. Additionally, our isopach maps of key horizons show that strain migrated toward the modern rift axis, located along the center of Lake Turkana, following the widespread eruption of the Gombe Group basalt around 4 million years ago. Together, these results indicate that the area of maximum subsidence is collocated with the area transected by the CARS. Thus, we propose that these earlier episodes of rifting may have influenced the development and evolution of the modern EARS in the northern TRZ. These results provide crucial information for understanding tectonics in the context of hominin evolution and offer new insights into forming a divergent plate boundary.more » « less
-
null (Ed.)The primary objective of International Ocean Discovery Program Expedition 381 was to retrieve a record of early continental rifting and basin evolution from the Corinth rift, central Greece. Continental rifting is fundamental for the formation of ocean basins, and active rift zones are dynamic regions of high geohazard potential. However, the detailed spatial and temporal evolution of a complete rift system needed to understand rift development from the fault to plate scale is poorly resolved. In the active Corinth rift, deformation rates are high, the recent synrift succession is preserved and complete offshore, and earlier rift phases are preserved onshore. Additionally, a dense seismic database provides high-resolution imaging of the fault network and seismic stratigraphy around the basin. As the basin has subsided, its depositional environment has been affected by fluctuating global sea level and its absolute position relative to sea level, and the basin sediments record this changing environment through time. In Corinth, we can therefore achieve an unprecedented precision of timing and spatial complexity of rift-fault system development, rift-controlled drainage system evolution, and basin fill in the first few million years of rift history. The following are the expedition themes: 1. High-resolution fault slip and rift evolution history, 2. Surface processes in active rifts, 3. High-resolution late Quaternary Eastern Mediterranean paleoclimate and paleoenvironment of a developing rift basin, and 4. Geohazard assessment in an active rift. These objectives were and will be accomplished as a result of successful drilling, coring, and logging at three sites in the Gulf of Corinth, which collectively yielded 1645 m of recovered core over a 1905 m cored interval. Together, these cores provide (1) a long rift history (Sites M0078 and M0080), (2) a high-resolution record of the most recent phase of rifting (Site M0079), and (3) the spatial variation of rift evolution (comparison of sites in the central and eastern rift). The sediments contain a rich and complex record of changing sedimentation, sediment and pore water geochemistry, and environmental conditions from micropaleontological assemblages. The preliminary chronology developed by shipboard analyses will be refined and improved during postexpedition research, providing a high-resolution chronostratigraphy down to the orbital timescale for a range of tectonic, sedimentological, and paleoenvironmental studies. This chronology will provide absolute timing of key rift events, rates of fault movement, rift extension and subsidence, and the spatial variations of these parameters. The core data will also allow us to investigate the relative roles of and feedbacks between tectonics, climate, and eustasy in sediment flux, basin evolution, and basin environment. Finally, the Corinth rift boreholes will provide the first long Quaternary record of Mediterranean-type climate in the region. The potential range of scientific applications for this unique data set is very large, encompassing tectonics, sedimentary processes, paleoenvironment, paleoclimate, paleoecology, geochemistry, and geohazards.more » « less
-
We investigate rifting during continental collision in southern Tibet by testing kinematic models for two classes of rifts: Tibetan rifts are defined as >150 km in length and crosscut the Lhasa Terrane, and Gangdese rifts are <150 km long and isolated within the high topography of the Gangdese Range. Discerning rift kinematics is a crucial step towards understanding rift behavior and evolution that has been historically limited. We evaluate spatiotemporal trends in fault displacement and extension onset in the Tangra Yumco (TYC) rift and several nearby Gangdese rifts and examine how contraction and rift exhumation relate to evolution of the Gangdese drainage divide. Igneous U-Pb and zircon (U-Th)/He (ZHe) results indicate rift footwall crystallization between ~59-49 Ma and cooling between ~60-4 Ma, respectively, with ZHe ages correlating with sample latitude. Samples from Gangdese latitudes (~29.4-29.8°N) yield predominantly Oligocene-early Miocene ages, whereas samples north of ~29.8°N yield both late Miocene-Pliocene ages and Paleocene-Eocene ages. Thermal history models indicate two-stage cooling, with initially slow cooling followed by accelerated cooling during late Miocene-Pliocene time. From spatial distributions of ZHe ages we interpret: (1) ~28-16 Ma ages from Gangdese latitudes reflect exhumation along contractional structures, (2) ~8-4 Ma ages reflect rift-related exhumation, and (3) ~60-48 Ma ages indicate these samples experienced lesser rift exhumation. Our data are consistent with a segment linkage evolution model for the TYC rift, with interactions between rifts and contractional structures likely influencing the evolution of topography and location of the Gangdese drainage divide since Miocene timemore » « less
An official website of the United States government
