Abstract Photochemical hazes are suspected to obscure molecular features, such as water, from detection in the transmission spectra of exoplanets with atmospheric temperatures <800 K. The opacities of laboratory produced organic compounds (tholins) from Khare et al. have become a standard for modeling haze in exoplanet atmospheres. However, these tholins were grown in an oxygen-free, Titan-like environment that is very different from typical assumptions for exoplanets, where C/O ∼ 0.5. This work presents the 0.13–10 μ m complex refractive indices derived from laboratory transmission measurements of tholins grown in environments with different oxygen abundances. With the increasing uptake of oxygen, absorption increases across the entire wavelength range, and a scattering feature around 6 μ m shifts toward shorter wavelengths and becomes more peaked around 5.8 μ m, due to a C = O stretch resonance. Using GJ 1214 b as a test case, we examine the transmission spectra of a sub-Neptune planet with C/O ratios of solar, 1, and 1000 to evaluate the effective differences between our opacities and those of Khare. For an atmosphere with solar hydrogen and helium abundances, we find a difference of 200–1500 ppm, but for high-metallicity ( Z = 1000) environments, the difference may only be 20 ppm. The 1–2 μ m transmission data for GJ 1214 b rule out the Titan-like haze model, and are more consistent with C/O = 1 and C/O = solar haze models. This work demonstrates that using haze opacities that are more consistent with underlying assumptions about bulk atmospheric composition are important for building self-consistent models that appropriately constrain the atmospheric C/O ratio, even when molecular features are obscured.
more »
« less
This content will become publicly available on September 10, 2026
The Impact of Organic Hazes and Graphite on the Observation of CO 2 -rich Sub-Neptune Atmospheres
Abstract Many sub-Neptune and super-Earth exoplanets are expected to develop metal-enriched atmospheres due to atmospheric loss processes such as photoevaporation or core-powered mass loss. Thermochemical equilibrium calculations predict that at high metallicity and a temperature range of 300–700 K, CO2becomes the dominant carbon species, and graphite may be the thermodynamically favored condensate under low-pressure conditions. Building on prior laboratory findings that such environments yield organic haze rather than graphite, we measured the transmittance spectra of organic haze analogs and graphite samples and computed their optical constants across the measured wavelength range from 0.4 to 25μm. The organic haze exhibits strong vibrational absorption bands, notably at 3.0, 4.5, and 6.0μm, while graphite shows featureless broadband absorption. The derived optical constants of haze and graphite provide the first data set for organic haze analogs formed in CO2-rich atmospheres and offer improved applicability over prior graphite data derived from bulk reflectance or ellipsometry. We implemented these optical constants into the Virga and PICASO cloud and radiative transfer models to simulate transit spectra for GJ 1214b. The synthetic spectra with organic hazes reproduce the muted spectral features in the near-infrared observed by Hubble and general trends observed by JWST for GJ 1214b, while graphite models yield flat spectra across the observed wavelengths. This suggests haze features may serve as observational markers of carbon-rich atmospheres, whereas graphite’s opacity could lead to radius overestimation, offering a possible explanation for superpuff exoplanets. Our work supplies essential optical to infrared data for interpreting observations of CO2-rich exoplanet atmospheres.
more »
« less
- Award ID(s):
- 2206245
- PAR ID:
- 10656898
- Publisher / Repository:
- IOP
- Date Published:
- Journal Name:
- The Astrophysical Journal Letters
- Volume:
- 990
- Issue:
- 2
- ISSN:
- 2041-8205
- Page Range / eLocation ID:
- L66
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Super-Earths and sub-Neptunes are the most common exoplanets, with a “radius valley” suggesting that super-Earths may form by shedding sub-Neptunes’ gaseous envelopes. Exoplanets that lie closer to the super-Earth side of the valley are more likely to have lost a significant fraction of their original H/He envelopes and become enriched in heavier elements, with CO2gaining in abundance. It remains unclear which types of haze would form in such atmospheres, potentially significantly affecting spectroscopic observations. To investigate this, we performed laboratory simulations of two CO2-rich gas mixtures (with 2000 times solar metallicity at 300 and 500 K). We found that under plasma irradiation organic hazes were produced at both temperatures, with a higher haze production rate at 300 K, probably because condensation occurs more readily at lower temperature. Gas-phase analysis demonstrates the formation of various hydrocarbons, oxygen- and nitrogen-containing species, including reactive gas precursors like C2H4, CH2O, and HCN, for haze formation. The compositional analysis of the haze particles reveals various functional groups and molecular formulas in both samples. The 500 K haze sample has larger average molecular sizes, a higher degree of unsaturation with more double or triple bonds present, and higher nitrogen content incorporated as N–H and C=N bonds, indicating different haze formation pathways. These findings not only improve the haze formation theories in CO2-rich exoplanet atmospheres but also offer important implications for the interpretation of future observational data.more » « less
-
The high-energy radiative output, from the X-ray to the ultraviolet, of exoplanet host stars drives photochemical reactions and mass loss in the upper regions of planetary atmospheres. In order to place constraints on the atmospheric properties of the three closest terrestrial exoplanets transiting M dwarfs, we observe the high-energy spectra of the host stars LTT 1445A and GJ 486 in the X-ray withXMM-NewtonandChandraand in the ultraviolet with HST/COS and STIS. We combine these observations with estimates of extreme-ultraviolet flux, reconstructions of the Lyαlines, and stellar models at optical and infrared wavelengths to produce panchromatic spectra from 1 Å to 20 µm for each star. While LTT 1445Ab, LTT 1445Ac, and GJ 486b do not possess primordial hydrogen-dominated atmospheres, we calculate that they are able to retain pure CO2atmospheres if starting with 10, 15, and 50% of Earth’s total CO2budget, respectively, in the presence of their host stars’ stellar wind. We use age-activity relationships to place lower limits of 2.2 and 6.6 Gyr on the ages of the host stars LTT 1445A and GJ 486. Despite both LTT 1445A and GJ 486 appearing inactive at optical wavelengths, we detect flares at ultraviolet and X-ray wavelengths for both stars. In particular, GJ 486 exhibits two far-ultraviolet flares with absolute energies of 1029.5and 1030.1erg (equivalent durations of 4357 ± 96 and 19 724 ± 169 s) occurring 3 h apart. Based on the timing of the observations, we suggest that these high-energy flares are related and indicative of heightened flaring activity that lasts for a period of days, but our interpretations are limited by sparse time-sampling. Consistent high-energy monitoring is needed to determine the duration and extent of high-energy activity on individual M dwarfs and the population as a whole.more » « less
-
Abstract The near-infrared transmission spectrum of the warm sub-Neptune exoplanet GJ 1214 b has been observed to be flat and featureless, implying a high metallicity atmosphere with abundant aerosols. Recent JWST MIRI Low Resolution Spectrometer observations of a phase curve of GJ 1214 b showed that its transmission spectrum is flat out into the mid-infrared. In this paper, we use the combined near- and mid-infrared transmission spectrum of GJ 1214 b to constrain its atmospheric composition and aerosol properties. We generate a grid of photochemical haze models using an aerosol microphysics code for a number of background atmospheres spanning metallicities from 100 to 1000× solar, as well as a steam atmosphere scenario. The flatness of the combined data set largely rules out atmospheric metallicities ≤300× solar due to their large corresponding molecular feature amplitudes, preferring values ≥1000× solar and column haze production rates ≥10 −10 g cm −2 s −1 . The steam atmosphere scenario with similarly high haze production rates also exhibits sufficiently small molecular features to be consistent with the transmission spectrum. These compositions imply that atmospheric mean molecular weights ≥15 g mol −1 are needed to fit the data. Our results suggest that haze production is highly efficient on GJ 1214 b and could involve non-hydrocarbon, non-nitrogen haze precursors. Further characterization of GJ 1214 b’s atmosphere would likely require multiple transits and eclipses using JWST across the near- and mid-infrared, potentially complemented by ground-based high-resolution transmission spectroscopy.more » « less
-
Abstract In the upcoming decades, one of the primary objectives in exoplanet science is to search for habitable planets and signs of extraterrestrial life in the Universe. Signs of life can be indicated by thermal-dynamical imbalance in terrestrial planet atmospheres. O2and CH4in the modern Earth’s atmosphere are such signs, commonly termed biosignatures. These biosignatures in exoplanetary atmospheres can potentially be detectable through high-contrast imaging instruments on future extremely large telescopes. To quantify the signal-to-noise ratio (S/N) with extremely large telescopes, we select up to 10 nearby rocky planets and simulate medium-resolution (R∼ 1000) direct imaging of these planets using the Mid-infrared ELT Imager and Spectrograph (ELT/METIS, 3–5.6μm) and the High Angular Resolution Monolithic Optical and Near-infrared Integral field spectrograph (ELT/HARMONI, 0.5–2.45μm). We calculate the S/N for the detection of biosignatures including CH4, O2, H2O, and CO2. Our results show that GJ 887 b has the highest detection of S/N for biosignatures, and Proxima Cen b exhibits the only detectable CO2among the targets for ELT/METIS direct imaging. We also investigate the TRAPPIST-1 system, the archetype of nearby transiting rocky planet systems, and compare the biosignature detection of transit spectroscopy with JWST versus direct spectroscopy with ELT/HARMONI. Our findings indicate JWST is more suitable for detecting and characterizing the atmospheres of transiting planet systems such as TRAPPIST-1 that are relatively further away and have smaller angular separations than more nearby nontransiting planets.more » « less
An official website of the United States government
