Abstract Turbulent mixing in the ocean, lakes and reservoirs facilitates the transport of momentum, heat, nutrients, and other passive tracers. Turbulent fluxes are proportional to the rate of turbulent kinetic energy dissipation per unit mass,ε. A common method forεmeasurements is using microstructure profilers with shear probes. Such measurements are now widespread, and a non-expert practitioner will benefit from best practice guidelines and benchmark datasets. As a part of the Scientific Committee on Oceanographic Research (SCOR) working group on “Analysing ocean turbulence observations to quantify mixing” (ATOMIX), we compiled a collection of five benchmark data ofεfrom measurements of turbulence shear using shear probes. The datasets are processed using the ATOMIX recommendations for best practices documented separately. Here, we describe and validate the datasets. The benchmark collection is from different types of instruments and covers a wide range of environmental conditions. These datasets serve to guide the users to test theirεestimation methods and quality-assurance metrics, and to standardize their data for archiving.
more »
« less
This content will become publicly available on December 1, 2026
Clay-based HAB mitigation: the role of turbulence in aggregate formation and settling
Abstract Harmful algal blooms (HABs) pose significant threats to aquatic ecosystems and human health, necessitating efficient mitigation strategies. Although clay-algae aggregation has been widely used for controlling HABs, the slow sedimentation of clay-algae aggregates hampers its effectiveness. We examine how turbulence dynamics affect the formation and settling of clay-algae aggregates. Using a custom-designed plankton tower equipped with an oscillating grid and an in-situ imaging system, we investigated how varying dissipation rates of turbulent kinetic energy (ε = 8 × 10−9to 9 × 10−5m2/s3) affected the removal efficiency ofMicrocystis aeruginosaby laponite clay. In addition, we directly measured the settling velocity and size of clay-algae aggregates over time. The results demonstrate that turbulent mixing, on a time scale typical of the diurnal mixed layer of lakes, can enhance the removal efficiency of HABs by up to threefold. Higher turbulence dissipation rate,ε, leads to an increase in the settling velocity and size of clay-algae aggregates. We demonstrate that the maximum removal efficiency ofMicrocystis aeruginosais achieved when the ratio of the diameter of clay-algae aggregates is half the Kolmogorov length scale. Our findings highlight the importance of turbulence in enhancing clay-based HAB mitigation and provide actionable insights for field applications, such as leveraging natural wind-driven mixing or implementing mechanical agitation in the lakes’ surface mixed layer. This study bridges the gap between well-controlled laboratory experiments and real-world HAB implementation.
more »
« less
- Award ID(s):
- 2236497
- PAR ID:
- 10656941
- Publisher / Repository:
- Springer
- Date Published:
- Journal Name:
- Environmental Fluid Mechanics
- Volume:
- 25
- Issue:
- 6
- ISSN:
- 1567-7419
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract On the night of 18–19 October 2018, sodium resonance lidar measurements show the presence of overturning in the mesospheric sodium layer. Two independent tracers, sodium mixing ratio and potential temperature, derived from resonance and Rayleigh lidar measurements, reveal that vertical spreading of the sodium mixing ratio contours and a layer of convective instability coincide with this overturning. Analysis of lidar measurements also reveals the presence of gravity waves that propagate upward, are saturated, and dissipate at the height of the convective instability. The vertical spreading is analyzed in terms of turbulent diffusive transport using a model based on material continuity of sodium. Estimates of the turbulent eddy diffusion coefficient, K, and energy dissipation rate,εare derived from the transport model. The energy dissipated by the gravity waves is also calculated and found to be sufficient to generate the turbulence. We consider three other examples of overturning, instability and spreading on the nights of: 17–18 February 2009, 25–26 January 2015, and 8–9 October 2018. For all four events we find that the values of K (∼1,000 m2/s) are larger and the values ofε(∼10–100 mW/kg) are of similar magnitude to those values typically reported by ionization gauge measurements. These examples also reveal that higher levels of turbulent mixing are consistently found in regions of lower stability.more » « less
-
Abstract Generating mechanisms and parameterizations for enhanced turbulence in the wake of a seamount in the path of the Kuroshio are investigated. Full-depth profiles of finescale temperature, salinity, horizontal velocity, and microscale thermal-variance dissipation rate up- and downstream of the ∼10-km-wide seamount were measured with EM-APEX profiling floats and ADCP moorings. Energetic turbulent kinetic energy dissipation ratesand diapycnal diffusivitiesabove the seamount flanks extend at least 20 km downstream. This extended turbulent wake length is inconsistent with isotropic turbulence, which is expected to decay in less than 100 m based on turbulence decay time ofN−1∼ 100 s and the 0.5 m s−1Kuroshio flow speed. Thus, the turbulent wake must be maintained by continuous replenishment which might arise from (i) nonlinear instability of a marginally unstable vortex wake, (ii) anisotropic stratified turbulence with expected downstream decay scales of 10–100 km, and/or (iii) lee-wave critical-layer trapping at the base of the Kuroshio. Three turbulence parameterizations operating on different scales, (i) finescale, (ii) large-eddy, and (iii) reduced-shear, are tested. Averageεvertical profiles are well reproduced by all three parameterizations. Vertical wavenumber spectra for shear and strain are saturated over 10–100 m vertical wavelengths comparable to water depth with spectral levels independent ofεand spectral slopes of −1, indicating that the wake flows are strongly nonlinear. In contrast, vertical divergence spectral levels increase withε.more » « less
-
Abstract Measurements collected by a Remote Environmental Monitoring Units (REMUS) 600 autonomous underwater vehicle (AUV) off the coast of southern California demonstrate large-scale coherent wave-driven vortices, consistent with Langmuir turbulence (LT), and played a dominant role in structuring turbulent dissipation within the oceanic surface boundary layer. During a 10-h period with sustained wind speeds of 10 m s−1, Langmuir circulations were limited to the upper third of the surface mixed layer by persistent stratification within the water column. The ensemble-averaged circulation, calculated using conditional averaging of acoustic Doppler dual current profile (AD2CP) velocity profiles using elevated backscattering intensity associated with subsurface bubble clouds, indicates that LT vortex pairs were characterized by an energetic downwelling zone flanked by broader, weaker upwelling regions with vertical velocity magnitudes similar to previous numerical studies of LT. Horizontally distributed microstructure estimates of turbulent kinetic energy dissipation rates were lognormally distributed near the surface in the wave mixing layer with the majority of values falling between wall layer scaling and wave transport layer scaling. Partitioning dissipation rates between downwelling centers and ambient conditions suggests that LT may play a dominant role in elevating dissipation rates in the ocean surface boundary layer (OSBL) by redistributing wave-breaking turbulence.more » « less
-
Measurements collected by a REMUS 600 AUV off the coast of southern California demonstrate large-scale coherent wave-driven vortices, consistent with Langmuir turbulence (LT), played a dominant role in structuring turbulent dissipation within the oceanic surface boundary layer. During a 10-hour period with sustained wind speeds of 10 m/s, Langmuir circulations were limited to the upper third of the surface mixed layer by persistent stratification within the water column. The ensemble-averaged circulation, calculated using conditional averaging of AD2CP velocity profiles using elevated backscattering intensity associated with subsurface bubble clouds, indicates that LT vortex pairs were characterized by an energetic downwelling zone flanked by broader, weaker upwelling regions with vertical velocity magnitudes similar to previous numerical studies of LT. Horizontally-distributed microstructure estimates of turbulent kinetic energy dissipation rates were lognormally-distributed near the surface in the wave mixing layer with the majority of values falling between wall layer scaling and wave transport layer scaling. Partitioning dissipation rates between downwelling centers and ambient conditions suggests that LT may play a dominant role in elevating dissipation rates in the OSBL by redistributing wave-breaking turbulence.more » « less
An official website of the United States government
