skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Compounds with Chelating 3-Dimethylamino-1-propyl Ligands as Chemical Vapor Deposition Precursors. Synthesis and Characterization of M[(CH 2 ) 3 NMe 2 ] 2 Complexes of Nickel(II), Palladium(II), and Platinum(II)
Award ID(s):
2400099
PAR ID:
10656982
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
Organometallics
Volume:
43
Issue:
20
ISSN:
0276-7333
Page Range / eLocation ID:
2548 to 2556
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Half a century since the photocatalytic disproportionation of Lappert's dialkyl stannylene SnR 2 , R = CH(SiMe 3 ) 2 (1) gave the persistent trivalent radical [·SnR 3 ], the characterization of the corresponding Sn(I) product, ·SnR is now described. It was isolated as the hexastannaprismane Sn 6 R 6 (2), from the reduction of 1 by the Mg(I)-reagent, Mg(BDI Dip ) 2 , (BDI = (DipNCMe) 2 CH, Dip + 2,6-diisopropylphenyl). 
    more » « less
  2. High-resolution X-ray diffraction experiments, theoretical calculations and atom-specific X-ray absorption experiments were used to investigate two nickel complexes, (MePh 3 P) 2 [Ni II (bdtCl 2 ) 2 ]·2(CH 3 ) 2 SO [complex (1)] and (MePh 3 P)[Ni III (bdtCl 2 ) 2 ] [complex (2)]. Combining the techniques of nickel K - and sulfur K -edge X-ray absorption spectroscopy with high-resolution X-ray charge density modeling, together with theoretical calculations, the actual oxidation states of the central Ni atoms in these two complexes are investigated. Ni ions in two complexes are clearly in different oxidation states: the Ni ion of complex (1) is formally Ni II ; that of complex (2) should be formally Ni III , yet it is best described as a combination of Ni 2+ and Ni 3+ , due to the involvement of the non-innocent ligand in the Ni— L bond. A detailed description of Ni—S bond character (σ,π) is presented. 
    more » « less
  3. Spontaneous Ge6O8cluster formation under ambient conditions using dispersion enhanced aryloxo ligands. 
    more » « less
  4. Abstract Coordination complexes of general formulatrans‐[MX2(R2ECH2CH2ER2)2] (MII=Ti, V, Cr, Mn; E=N or P; R=alkyl or aryl) are a cornerstone of coordination and organometallic chemistry. We investigate the electronic properties of two such complexes,trans‐[VCl2(tmeda)2] andtrans‐[VCl2(dmpe)2], which thus representtrans‐[MX2(R2ECH2CH2ER2)2] where M=V, X=Cl, R=Me and E=N (tmeda) and P (dmpe). These VIIcomplexes haveS=3/2 ground states, as expected for octahedral d3. Their tetragonal distortion leads to zero‐field splitting (zfs) that is modest in magnitude (D≈0.3 cm−1) relative to analogousS=1 TiIIand CrIIcomplexes. This parameter was determined from conventional EPR spectroscopy, but more effectively from high‐frequency and ‐field EPR (HFEPR) that determined the sign ofDas negative for the diamine complex, but positive for the diphosphine, which information had not been known for anytrans‐[VX2(R2ECH2CH2ER2)2] systems. The ligand‐field parameters oftrans‐[VCl2(tmeda)2] andtrans‐[VCl2(dmpe)2] are obtained using both classical theory andab initioquantum chemical theory. The results shed light not only on the electronic structure of VIIin this environment, but also on differences between N and P donor ligands, a key comparison in coordination chemistry. 
    more » « less
  5. The synthesis of previously unknown bis(cyclopentadienyl) complexes of the first transition metal, i.e., Sc(II) scandocene complexes, has been investigated using C5H2(tBu)3 (Cpttt), C5Me5 (Cp*), and C5H3(SiMe3)2 (Cp″) ligands. Cpttt 2ScI, 1, formed from ScI3 and KCpttt, can be reduced with potassium graphite (KC8) in hexanes to generate dark-red crystals of the first crystallographically characterizable bis(cyclopentadienyl) scandium(II) complex, Cpttt 2Sc, 2. Complex 2 has a 170.6° (ring centroid)-Sc-(ring centroid) angle and exhibits an eight-line EPR spectrum characteristic of Sc(II) with Aiso = 82.6 MHz (29.6 G). It sublimes at 200 °C at 10−4 Torr and has a melting point of 268−271 °C. Reductions of Cp*2ScI and Cp″2ScI under analogous conditions in hexanes did not provide new Sc(II) complexes, and reduction of Cp*2ScI in benzene formed the Sc(III) phenyl complex, Cp*2Sc(C6H5), 3, by C−H bond activation. However, in Et2O and toluene, reduction of Cp*2ScI at −78 °C gives a dark-red solution, 4, which displays an eight-line EPR pattern like that of 1, but it did not provide thermally stable crystals. Reduction of Cp″2ScI, in THF or Et2O at −35 °C in the presence of 2.2.2-cryptand, yields the green Sc(II) metallocene iodide complex, [K(crypt)][Cp″2ScI], 5, which was identified by X-ray crystallography and EPR spectroscopy and is thermally unstable. The analogous reaction of Cp*2ScI with KC8 and 18-crown-6 in Et2O gave the ligand redistribution product, [Cp*2Sc(18- crown-6-κ2O,O′)][Cp*2ScI2], 6, as the only crystalline product. Density functional theory 
    more » « less