skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on September 3, 2026

Title: Human Heterogeneity Invariant Stress Sensing
Stress affects physical and mental health, and wearable devices have been widely used to detect daily stress through physiological signals. However, these signals vary due to factors such as individual differences and health conditions, making generalizing machine learning models difficult. To address these challenges, we present Human Heterogeneity Invariant Stress Sensing (HHISS), a domain generalization approach designed to find consistent patterns in stress signals by removing person-specific differences. This helps the model perform more accurately across new people, environments, and stress types not seen during training. Its novelty lies in proposing a novel technique called person-wise sub-network pruning intersection to focus on shared features across individuals, alongside preventing overfitting by leveraging continuous labels while training. The present study focuses on people with opioid use disorder (OUD)---a group where stress responses can change dramatically depending on the presents of opioids in their system, including daily timed medication for OUD (MOUD). Since stress often triggers cravings, a model that can adapt well to these changes could support better OUD rehabilitation and recovery. We tested HHISS on seven different stress datasets---four which we collected ourselves and three public datasets. Four are from lab setups, one from a controlled real-world driving setting, and two are from real-world in-the-wild field datasets with no constraints. The present study is the first known to evaluate how well a stress detection model works across such a wide range of data. Results show HHISS consistently outperformed state-of-the-art baseline methods, proving both effective and practical for real-world use. Ablation studies, empirical justifications, and runtime evaluations confirm HHISS's feasibility and scalability for mobile stress sensing in sensitive real-world applications.  more » « less
Award ID(s):
2526174 2124285
PAR ID:
10657055
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
Volume:
9
Issue:
3
ISSN:
2474-9567
Page Range / eLocation ID:
1 to 42
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Monitoring the compliance of social distancing is critical for schools and offices to recover in-person operations in indoor spaces from the COVID-19 pandemic. Existing systems focus on vision- and wearable-based sensing approaches, which require direct line-of-sight or device-carrying and may also raise privacy concerns. To overcome these limitations, we introduce a new monitoring system for social distancing compliance based on footstep-induced floor vibration sensing. This system is device-free, non-intrusive, and perceived as more privacy-friendly. Our system leverages the insight that footsteps closer to the sensors generate vibration signals with larger amplitudes. The system first estimates the location of each person relative to the sensors based on signal energy and then infers the distance between two people. We evaluated the system through a real-world experiment with 8 people, and the system achieves an average accuracy of 97.8% for walking scenario classification and 80.4% in social distancing violation detection. 
    more » « less
  2. Vital signs monitoring has gained increasing attention due to its ability to indicate various human health and well-being conditions. The development of WiFi sensing technologies has made it possible to monitor vital signs using ubiquitous WiFi signals and devices. However, most existing approaches are dedicated to single-person scenarios. A few WiFi sensing approaches can achieve multi-person vital signs monitoring, whereas they are not identity-aware and sensitive to interferences in the environment. In this paper, we propose SpaceBeat, an identity-aware and interference-robust multi-person vital sign monitoring system using commodity WiFi. In particular, our system separates multiple people and locates each person in the spatial domain by leveraging multiple antennas. We analyze the change of signals at the location of each person to achieve identity-aware vital signs monitoring. We also design a contrastive principal component analysis-contrastive learning framework to mitigate interferences caused by other moving people. We evaluate SpaceBeat in various challenging environments, including interference scenarios, non-line-of-sight scenarios, different distances, etc. Our system achieves an average accuracy of 99.1% for breathing monitoring and 97.9% for heartbeat monitoring. 
    more » « less
  3. There is a growing body of research revealing that longitudinal passive sensing data from smartphones and wearable devices can capture daily behavior signals for human behavior modeling, such as depression detection. Most prior studies build and evaluate machine learning models using data collected from a single population. However, to ensure that a behavior model can work for a larger group of users, its generalizability needs to be verified on multiple datasets from different populations. We present the first work evaluating cross-dataset generalizability of longitudinal behavior models, using depression detection as an application. We collect multiple longitudinal passive mobile sensing datasets with over 500 users from two institutes over a two-year span, leading to four institute-year datasets. Using the datasets, we closely re-implement and evaluated nine prior depression detection algorithms. Our experiment reveals the lack of model generalizability of these methods. We also implement eight recently popular domain generalization algorithms from the machine learning community. Our results indicate that these methods also do not generalize well on our datasets, with barely any advantage over the naive baseline of guessing the majority. We then present two new algorithms with better generalizability. Our new algorithm, Reorder, significantly and consistently outperforms existing methods on most cross-dataset generalization setups. However, the overall advantage is incremental and still has great room for improvement. Our analysis reveals that the individual differences (both within and between populations) may play the most important role in the cross-dataset generalization challenge. Finally, we provide an open-source benchmark platform GLOBEM- short for Generalization of Longitudinal BEhavior Modeling - to consolidate all 19 algorithms. GLOBEM can support researchers in using, developing, and evaluating different longitudinal behavior modeling methods. We call for researchers' attention to model generalizability evaluation for future longitudinal human behavior modeling studies. 
    more » « less
  4. Abstract ObjectivesWe apply new statistical models to daily diary data to advance both methodological and conceptual goals. We examine age effects in within-person slopes in daily diary data and introduce Generalized Fiducial Inference (GFI), which provides a compromise between frequentist and Bayesian inference. We use daily stressor exposure data across six domains to generate within-person emotional reactivity slopes with daily negative affect. We test for systematic age differences and similarities in these reactivity slopes, which are inconsistent in previous research. MethodOne hundred and eleven older (aged 60–90) and 108 younger (aged 18–36) adults responded to daily stressor and negative affect questions each day for eight consecutive days, resulting in 1,438 total days. Daily stressor domains included arguments, avoided arguments, work/volunteer stressors, home stressors, network stressors, and health-related stressors. ResultsUsing Bayesian, GFI, and frequentist paradigms, we compared results for the six stressor domains with a focus on interpreting age effects in within-person reactivity. Multilevel models suggested null age effects in emotional reactivity across each of the paradigms within the domains of avoided arguments, work/volunteer stressors, home stressors, and health-related stressors. However, the models diverged with respect to null age effects in emotional reactivity to arguments and network stressors. DiscussionThe three paradigms converged on null age effects in reactivity for four of the six stressor domains. GFI is a useful tool that provides additional information when making determinations regarding null age effects in within-person slopes. We provide the code for readers to apply these models to their own data. 
    more » « less
  5. Chen, Chi-Hua (Ed.)
    Mobile sensing data processed using machine learning models can passively and remotely assess mental health symptoms from the context of patients’ lives. Prior work has trained models using data from single longitudinal studies, collected from demographically homogeneous populations, over short time periods, using a single data collection platform or mobile application. The generalizability of model performance across studies has not been assessed. This study presents a first analysis to understand if models trained using combined longitudinal study data to predict mental health symptoms generalize across current publicly available data. We combined data from the CrossCheck (individuals living with schizophrenia) and StudentLife (university students) studies. In addition to assessing generalizability, we explored if personalizing models to align mobile sensing data, and oversampling less-represented severe symptoms, improved model performance. Leave-one-subject-out cross-validation (LOSO-CV) results were reported. Two symptoms (sleep quality and stress) had similar question-response structures across studies and were used as outcomes to explore cross-dataset prediction. Models trained with combined data were more likely to be predictive (significant improvement over predicting training data mean) than models trained with single-study data. Expected model performance improved if the distance between training and validation feature distributions decreased using combined versus single-study data. Personalization aligned each LOSO-CV participant with training data, but only improved predicting CrossCheck stress. Oversampling significantly improved severe symptom classification sensitivity and positive predictive value, but decreased model specificity. Taken together, these results show that machine learning models trained on combined longitudinal study data may generalize across heterogeneous datasets. We encourage researchers to disseminate collected de-identified mobile sensing and mental health symptom data, and further standardize data types collected across studies to enable better assessment of model generalizability. 
    more » « less