skip to main content


Title: Social Distancing Compliance Monitoring for COVID-19 Recovery Through Footstep-Induced Floor Vibrations
Monitoring the compliance of social distancing is critical for schools and offices to recover in-person operations in indoor spaces from the COVID-19 pandemic. Existing systems focus on vision- and wearable-based sensing approaches, which require direct line-of-sight or device-carrying and may also raise privacy concerns. To overcome these limitations, we introduce a new monitoring system for social distancing compliance based on footstep-induced floor vibration sensing. This system is device-free, non-intrusive, and perceived as more privacy-friendly. Our system leverages the insight that footsteps closer to the sensors generate vibration signals with larger amplitudes. The system first estimates the location of each person relative to the sensors based on signal energy and then infers the distance between two people. We evaluated the system through a real-world experiment with 8 people, and the system achieves an average accuracy of 97.8% for walking scenario classification and 80.4% in social distancing violation detection.  more » « less
Award ID(s):
2026699
NSF-PAR ID:
10333677
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
SenSys '21: Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems
Page Range / eLocation ID:
399 to 400
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This demonstration presents a working prototype of VitalHub, a practical solution for longitudinal in-home vital signs monitoring. To balance the trade-offs between the challenges related to an individual’s efforts thus compliance, and robustness with vital signs monitoring, we introduce a passive monitoring solution, which is free of any on-body device or cooperative efforts from the user. By fusing the inputs from a pair of co-located UWB and depth sensors, VitalHub achieves robust, passive, context-aware and privacy-preserving sensing. We use a COTS UWB sensor to detect chest wall displacement due to the respiration and heartbeat for vital signs extraction. We use the depth information from Microsoft Kinect to detect and locate the users in the field of view and recognize the activities of the respective users for further analysis. We have tested the prototype extensively in engineering and medical lab environments. We will demonstrate the features and performance of VitalHub using real-world data in comparison with an FDA approved medical device. 
    more » « less
  2. This demonstration presents a working prototype of VitalHub, a practical solution for longitudinal in-home vital signs monitoring. To balance the trade-offs between the challenges related to an individual’s efforts thus compliance, and robustness with vital signs monitoring, we introduce a passive monitoring solution, which is free of any on-body device or cooperative efforts from the user. By fusing the inputs from a pair of co-located UWB and depth sensors, VitalHub achieves robust, passive, context-aware and privacy-preserving sensing. We use a COTS UWB sensor to detect chest wall displacement due to the respiration and heartbeat for vital signs extraction. We use the depth information from Microsoft Kinect to detect and locate the users in the field of view and recognize the activities of the respective users for further analysis.We have tested the prototype extensively in engineering and medical lab environments. We will demonstrate the features and performance of VitalHub using realworld data in comparison with an FDA approved medical device. 
    more » « less
  3. Background Social networks such as Twitter offer the clinical research community a novel opportunity for engaging potential study participants based on user activity data. However, the availability of public social media data has led to new ethical challenges about respecting user privacy and the appropriateness of monitoring social media for clinical trial recruitment. Researchers have voiced the need for involving users’ perspectives in the development of ethical norms and regulations. Objective This study examined the attitudes and level of concern among Twitter users and nonusers about using Twitter for monitoring social media users and their conversations to recruit potential clinical trial participants. Methods We used two online methods for recruiting study participants: the open survey was (1) advertised on Twitter between May 23 and June 8, 2017, and (2) deployed on TurkPrime, a crowdsourcing data acquisition platform, between May 23 and June 8, 2017. Eligible participants were adults, 18 years of age or older, who lived in the United States. People with and without Twitter accounts were included in the study. Results While nearly half the respondents—on Twitter (94/603, 15.6%) and on TurkPrime (509/603, 84.4%)—indicated agreement that social media monitoring constitutes a form of eavesdropping that invades their privacy, over one-third disagreed and nearly 1 in 5 had no opinion. A chi-square test revealed a positive relationship between respondents’ general privacy concern and their average concern about Internet research (P<.005). We found associations between respondents’ Twitter literacy and their concerns about the ability for researchers to monitor their Twitter activity for clinical trial recruitment (P=.001) and whether they consider Twitter monitoring for clinical trial recruitment as eavesdropping (P<.001) and an invasion of privacy (P=.003). As Twitter literacy increased, so did people’s concerns about researchers monitoring Twitter activity. Our data support the previously suggested use of the nonexceptionalist methodology for assessing social media in research, insofar as social media-based recruitment does not need to be considered exceptional and, for most, it is considered preferable to traditional in-person interventions at physical clinics. The expressed attitudes were highly contextual, depending on factors such as the type of disease or health topic (eg, HIV/AIDS vs obesity vs smoking), the entity or person monitoring users on Twitter, and the monitored information. Conclusions The data and findings from this study contribute to the critical dialogue with the public about the use of social media in clinical research. The findings suggest that most users do not think that monitoring Twitter for clinical trial recruitment constitutes inappropriate surveillance or a violation of privacy. However, researchers should remain mindful that some participants might find social media monitoring problematic when connected with certain conditions or health topics. Further research should isolate factors that influence the level of concern among social media users across platforms and populations and inform the development of more clear and consistent guidelines. 
    more » « less
  4. In this paper, we explore how computing device use by people with upper extremity impairment (UEI) was affected by COVID-19. Someone with UEI has reduced use of their shoulders, upper arms, forearms, hands, and/or fingers. We conducted six (6) semi-structured interviews with participants with UEI in the US. We found that people with UEI increased computing device use during COVID-19 not only for remote interactions but also in person. Additionally, social distancing for COVID-19 safety created the need for new assistive technology (AT), authentication requirements, and communication platforms, which introduced their own accessibility barriers. We also found that personal protective equipment (PPE) created new barriers during computing device use, which often caused people with UEI to choose COVID-19 safety over the usability of their computing devices. Based on these findings, we describe future opportunities to make computing devices more accessible for people with UEI to manage the shifts in computing device use introduced by COVID-19. 
    more » « less
  5. null (Ed.)
    Perspiration level monitoring enables numerous applications such as physical condition estimation, personal comfort monitoring, health/exercise monitoring, and inference of environmental conditions of the user. Prior works on perspiration (sweat) sensing require users to manually hold a device or attach adhesive sensors directly onto their skin, limiting user mobility and comfort. In this paper, we present a low-cost and novel wearable sensor system that is able to accurately estimate an individual's sweat level based on measuring moisture. The sensor is designed in a threadlike form factor, allowing it to be sewn into the seams of clothing, rather than having to act as a standalone sensor that the user must attach to their body. The system is comprised of multiple cotton-covered conductive threads that are braided into one sensor. When a person sweats, the resistance between the braided conductive threads changes as moisture becomes trapped in the cotton covering of the threads. The braided three-dimensional structure allows for robust estimation of perspiration level in the presence of external forces that may cause sensor distortion, such as motion. We characterize the relationship between the volume of sweat and measured resistance between the braided threads. Finally, we weave our sensors into the fabric of a shirt and conduct on-body experiments to study users' sweating level through various activities. 
    more » « less