skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Robust and finite-time stable model-free control for second order systems without velocity measurements
This article presents a framework for model-free control design for mechanical systems without velocity measurements and with an unknown dynamics, considered as a bounded disturbance input. The system states consist of zeroth-order (e.g position) and first-order (e.g velocity) vectors, but only the zeroth-order states are the measured outputs. This model-free control framework is based on a first-order signal differentiator and a finite-time stable extended state observer that simultaneously estimates the states and the bounded disturbance input in real time with guaranteed bounds on accuracy of the estimates. The estimates provided by this observer are used to track a desired output trajectory and compensate the disturbance in real time. Overall nonlinear stability and robustness of the observer is shown theoretically and verified through numerical simulations. The proposed method can be applied to second-order systems and their teams, like mobile robots, unmanned aerial vehicles, unmanned (under)water vehicles and space vehicles.  more » « less
Award ID(s):
2132799 2343062
PAR ID:
10657088
Author(s) / Creator(s):
 ;  
Publisher / Repository:
IEEE
Date Published:
Page Range / eLocation ID:
1905 to 1910
Subject(s) / Keyword(s):
Model-free control, Hölder-continuous, finite-time stable
Format(s):
Medium: X
Location:
Milan, Italy
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Position tracking control in three spatial dimensions in the presence of unknown or uncertain dynamics, is applicable to unmanned aerial, ground, (under)water and space vehicles. This work gives a new approach to model-free position tracking control by designing an extended state observer to estimate the states and the uncertain dynamics, with guaranteed accuracy of estimates. The estimated states and uncertainties can be used in a control scheme in real-time for position tracking control. The uncertainty (disturbance input) estimate is provided by an extended state observer (ESO) that is finite-time stable (FTS), to provide accuracy and robustness. The ideas of homogeneous vector fields and real-valued functions are utilized for the ESO design and to prove FTS. The estimated disturbance is then utilized for compensation of this uncertainty in real-time, and to enhance the stability and robustness of the feedback tracking control scheme. 
    more » « less
  2. This work provides a finite-time stable disturbance observer design for the discretized dynamics of an unmanned vehicle in three-dimensional translational and rotational motion. The dynamics of this vehicle is discretized using a Lie group variational integrator as a grey box dynamics model that also accounts for unknown additive disturbance force and torque. Therefore, the input-state dynamics is partly known. The unknown dynamics is lumped into a single disturbance force and a single disturbance torque, both of which are estimated using the disturbance observer we design. This disturbance observer is finite-time stable (FTS) and works like a real-time machine learning scheme for the unknown dynamics. 
    more » « less
  3. This paper presents an observer-based event-triggered boundary control strategy for the one-phase Stefan problem, utilising the position and velocity measurements of the moving interface. The design of the observer and controller is founded on the infinite-dimensional backstepping approach. To implement the continuous-time observer-based controller in an event-triggered framework, we propose a dynamic event triggering condition. This condition specifies the instances when the control input must be updated. Between events, the control input is maintained constant in a Zero-Order-Hold manner. We demonstrate that the dwell-time between successive triggering moments is uniformly bounded from below, thereby precluding Zeno behaviour. The proposed event-triggered boundary control strategy ensures the wellposedness of the closed-loop system and the satisfaction of certain model validity conditions. Additionally, the global exponential convergence of the closed-loop system to the setpoint is established using Lyapunov approach. A simulation example is provided to validate the theoretical findings. 
    more » « less
  4. When the disturbance input matrix is nonlinear, existing disturbance observer design methods rely on the solvability of a partial differential equation or the existence of an output function with a uniformly well-defined disturbance relative degree, which can pose significant limitations. This note introduces a systematic approach for designing an Immersion and Invariance-based Disturbance Observer (IIDOB) that circumvents these strong assumptions. The proposed IIDOB ensures the disturbance estimation error is globally uniformly ultimately bounded by approximately solving a partial differential equation while compensating for the approximation error. Furthermore, by integrating IIDOB into the framework of control barrier functions, a filter-based safe control design method for control affine systems with disturbances is established where the filter is used to generate an alternative disturbance estimation signal with a known derivative. Sufficient conditions are established to guarantee the safety of the disturbed systems. Simulation results demonstrate the effectiveness of the proposed method. 
    more » « less
  5. This article presents an extended state observer for a vehicle modeled as a rigid body in three-dimensional translational and rotational motions. The extended state observer is applicable to a multi-rotor aerial vehicle with a fixed plane of rotors, modeled as an under-actuated system on the state-space TSE(3), the tangent bundle of the six-dimensional Lie group SE(3). This state-space representation globally represents rigid body motions without singularities. The extended state observer is designed to estimate the resultant external disturbance force and disturbance torque acting on the vehicle. It guarantees stable convergence of disturbance estimation errors in finite time when the disturbances are constant, and finite time convergence to a bounded neighborhood of zero errors for time-varying disturbances. This extended state observer design is based on a Hölder-continuous fast finite time stable differentiator that is similar to the super-twisting algorithm, to obtain fast convergence. Numerical simulations are conducted to validate the proposed extended state observer. The proposed extended state observer is compared with other existing research to show its advantages. A set of experimental results implementing disturbance rejection control using feedback of disturbance estimates from this extended state observer is also presented. 
    more » « less