This paper investigates the validity of two different analytical homogenization methods: the Mori–Tanaka mean-field theory and Milton’s correlation function-dependent bounds. We focus on biphase linearly elastic transversely isotropic composites. The composites consist of a matrix reinforced with long fibers of either circular or irregular cross section shapes formed by overlapping circles, with different degrees of radius polydispersity. The Mori–Tanaka effective stiffness depends on the phase moduli, volume fractions, and on a few geometric descriptors of the fibers that can be readily evaluated. In contrast, the computation of Milton’s bounds requires finer knowledge of the microstructure, in terms of two and three-point spatial correlation functions, which are not always analytically tractable. We thus consider very specific random microstructure geometries with known correlation functions. The effective moduli estimates of the two methods are validated against the results of numerical homogenization using the finite element method. It is shown that the Mori– Tanaka predictions of the effective transverse bulk modulus are significantly more accurate than those of the transverse and axial shear moduli. In addition, the predictions of the scheme generally deteriorate with an increasing fiber volume fraction. By contrast, the average of Milton’s upper and lower bounds provides a highly accurate estimate for all three independent effective moduli, without any limitation on the fiber concentration. This study highlights the indisputable effect of the spatial correlation functions on the effective properties of composites, and aspires to pave the way towards the development of more predictive, correlation function-dependent homogenization methods.
more »
« less
This content will become publicly available on July 14, 2026
Microstructure features that most influence the Mori-Tanaka scheme break-down in 2D solids with crack-like flat cavities
This study aims to detect in which microstructure conditions the Mori–Tanaka scheme is inappropriate to calculate the effective stiffness of a two-phase matrix-inclusion system.We analyze the discrepancy between numerical and Mori–Tanaka stiffness estimates in two-dimensional (2D) solids with crack-like flat cavities. The maximum transfer entropy that occurs between a microstructure feature and a stiffness component discrepancy cannot only detect the phase change between a Mori–Tanaka-like cracked solid to a non-Mori–Tanaka-like cracked solid, but also reveal at which load step that phase change first occurs and which microstructure features most affect that phase change. Further analysis with a binary classifier based on a support vector machine (SVM) algorithm shows that the systematic calculation of nine microstructure features based on six statistical crack network descriptors at each step of a loading path can inform the detection of a microstructure transition. The microstructure features identified here could thus be used to trigger the transition from one homogenization scheme to another during incremental stiffness updates, for example, during the simulation of a load path.
more »
« less
- PAR ID:
- 10657143
- Publisher / Repository:
- ASCE
- Date Published:
- Journal Name:
- Journal of engineering mechanics
- ISSN:
- 1943-7889
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Summary The dependence of rock behavior on the deformation rate is still not well understood. In salt rock, the fundamental mechanisms that drive the accumulation of irreversible deformation, the reduction of stiffness, and the development of hysteresis during cyclic loading are usually attributed to intracrystalline plasticity and diffusion. We hypothesize that at low pressure and low temperature, the rate‐dependent behavior of salt rock is governed by water‐assisted diffusion along grain boundaries. Accordingly, a chemo‐mechanical homogenization framework is proposed in which the representative elementary volume (REV) is viewed as a homogeneous polycrystalline matrix that contains sliding grain‐boundary cracks. The slip is related to the mass of salt ions that diffuse along the crack surface. The relationship between fluid inclusion‐scale and REV‐scale stresses and strains is established by using the Mori–Tanaka homogenization scheme. It is noted from the model that a lower strain rate and a larger number of sliding cracks enhance stiffness reduction and hysteresis. Thinner sliding cracks (i.e., thinner brine films) promote stiffness reduction and accelerate stress redistributions. The larger the volume fraction of the crack inclusions, the larger the REV deformation and the larger the hysteresis. Results presented in this study shed light on the mechanical behavior of salt rock that is pertinent to the design of geological storage facilities that undergo cyclic unloading, which could help optimize the energy production cycle with low carbon emissions.more » « less
-
A phase-field model for thermomechanically-induced fracture in NiTi at the single crystal level, i.e., fracture under loading paths that may take advantage of either of the functional properties of NiTi–superelasticity or shape memory effect–, is presented, formulated within the kinematically linear regime. The model accounts for reversible phase transformation from austenite to martensite habit plane variants and plastic deformation in the austenite phase. Transformation-induced plastic deformation is viewed as a mechanism for accommodation of the local deformation incompatibility at the austenite–martensite interfaces and is accounted for by introducing an interaction term in the free energy derived based on the Mori–Tanaka and Kröner micromechanical assumptions and the hypothesis of martensite instantaneous growth within austenite. Based on experimental observations suggesting that NiTi fractures in a stress-controlled manner, damage is assumed to be driven by the elastic energy, i.e., phase transformation and plastic deformation are assumed to contribute in crack formation and growth indirectly through stress redistribution. The model is restricted to quasistatic mechanical loading (no latent heat effects), thermal loading sufficiently slow with respect to the time rate of heat transfer by conduction (no thermal gradients), and a temperature range below 𝑀𝑑, which is the temperature above which the austenite phase is stable, i.e., stress-induced martensitic transformation is suppressed. The numerical implementation of the model is based on an efficient scheme of viscous regularization in both phase transformation and plastic deformation, an explicit numerical integration via a tangent modulus method, and a staggered scheme for the coupling of the unknown fields. The model is shown able to capture transformation-induced toughening, i.e., stable crack advance attributed to the shielding effect of inelastic deformation left in the wake of the growing crack under nominal isothermal loading, actuation-induced fracture under a constant bias load, and crystallographic dependence on crack pattern.more » « less
-
ABSTRACT A nonlinear variational auto‐encoder (NLVAE) is developed to reconstruct the plane strain stress field in a solid with embedded cracks subjected to uniaxial tension, uniaxial compression, and shear loading paths. Latent features are sampled from a skew‐normal distribution, which allows encoding marked variations of the features of the stress field across the load steps. The NLVAE is trained and tested based upon stress maps generated with the finite element method (FEM) with cohesive zone elements (CZEs). The NLVAE successfully captures stress concentrations that develop across the loading steps as a result of crack propagation, especially when enhanced disentanglement is emphasized during training. Some latent variables consistently emerge as significant across various microstructure descriptors and loading paths. Correlations observed between the evolution of fabric descriptors and that of their significant stress latent features indicate that the NLVAE can capture important microstructure transitions during the loading process. Crack connectivity, crack eccentricity, and the distribution of zones of highly connected opened cracks versus zones with no cracks are the fabric descriptors that best explain the sequences of latent features that are the most important for the reconstruction of the stress field. Notably, the distributional shape, tail behavior, and symmetry of microstructure descriptor distributions have more influence on the stress field than basic measures of central tendency and spread.more » « less
-
This study investigates the effects of pores on the mechanical properties of metals produced by additive manufacturing, which can limit strength and ductility. This research aims to both measure and model the rate of crack growth emanating from these pores in additively manufactured Ti-6Al-4 V fabricated with laser powder bed fusion. Uniaxial tensile samples containing intentionally embedded penny-shaped pores were mechanically tested to failure, and loading was interrupted by a series of unload steps to measure the stiffness degradation with load. The factors contributing to reduction in stiffness, namely (1) elastic and plastic changes to geometry, (2) the effect of plastic deformation on modulus, and (3) crack growth, were deconvoluted through finite element modeling, and the crack size was estimated at each unloading step. The stiffness-based method was able to detect stable crack growth in samples with large pores (1.6% to 11% of the cross-sectional area). Crack growth as a function of strain was fit to a model where the crack driving force was based on equivalent strain and a model where the crack driving force was based on energy release rate. Significant crack growth occurred only after the onset of necking in samples containing small pores, while samples containing large pores experienced continuous crack growth with strain.more » « less
An official website of the United States government
