skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 1, 2026

Title: Stress Field and Crack Pattern Interpretation by Deep Learning in a 2D Solid
ABSTRACT A nonlinear variational auto‐encoder (NLVAE) is developed to reconstruct the plane strain stress field in a solid with embedded cracks subjected to uniaxial tension, uniaxial compression, and shear loading paths. Latent features are sampled from a skew‐normal distribution, which allows encoding marked variations of the features of the stress field across the load steps. The NLVAE is trained and tested based upon stress maps generated with the finite element method (FEM) with cohesive zone elements (CZEs). The NLVAE successfully captures stress concentrations that develop across the loading steps as a result of crack propagation, especially when enhanced disentanglement is emphasized during training. Some latent variables consistently emerge as significant across various microstructure descriptors and loading paths. Correlations observed between the evolution of fabric descriptors and that of their significant stress latent features indicate that the NLVAE can capture important microstructure transitions during the loading process. Crack connectivity, crack eccentricity, and the distribution of zones of highly connected opened cracks versus zones with no cracks are the fabric descriptors that best explain the sequences of latent features that are the most important for the reconstruction of the stress field. Notably, the distributional shape, tail behavior, and symmetry of microstructure descriptor distributions have more influence on the stress field than basic measures of central tendency and spread.  more » « less
Award ID(s):
2135584 2416344
PAR ID:
10657140
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley
Date Published:
Journal Name:
International Journal for Numerical and Analytical Methods in Geomechanics
Volume:
49
Issue:
2
ISSN:
0363-9061
Page Range / eLocation ID:
592 to 616
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Cracking during sintering is a common problem in powder processing and is usually caused by constraint that prevents the sintering material from shrinking in one or more directions. Different factors influence sintering‐induced cracking, including temperature schedule, packing density, and specimen geometry. Here we use the discrete element method to directly observe the stress distribution and sinter‐cracking behavior in edge notched panels sintered under a uniaxial restraint. This geometry allows an easy comparison with traditional fracture mechanics parameters, facilitating analysis of sinter‐cracking behavior. We find that cracking caused by self‐stress during sintering resembles the growth of creep cracks in fully dense materials. By deriving the constrained densification rate from the appropriate constitutive equations, we discover that linear shrinkage transverse to the loading axis is accelerated by a contribution from the effective Poisson's ratio of a sintering solid. Simulation of different notch geometries and initial relative densities reveals conditions that favor densification and minimize crack growth, alluding to design methods for avoiding cracking in actual sintering processes. We combine the far‐field stress and crack length to compute the net section stress, finding that it characterizes the stress profile between the notches and correlates with the sinter‐crack growth rate, demonstrating its potential to quantitatively describe sinter‐cracking. 
    more » « less
  2. Abstract Fatigue short‐cracks in Mg alloys display complex growth behavior due to high plastic anisotropy and crack path dependence on local microstructural features. In this study, the three‐dimensional crystallography of short‐crack paths in Mg alloy WE43 was characterized by mapping near‐field high‐energy X‐ray diffraction microscopy (HEDM) reconstructed grain maps to high‐resolution X‐ray CT reconstructions of the fracture surfaces in the crack initiation and short‐crack growth regions of six ultrasonic fatigue specimens. Crack–grain–boundary intersections were analyzed at 81 locations across the six crack paths. The basal intragranular, non‐basal intragranular, or intergranular character of short‐crack growth following each boundary intersection was correlated to crystallographic and geometric parameters of the trailing and leading grains, three‐dimensional grain boundary plane, and advancing crack front. The results indicate that crack paths are dependent on the combined crystallographic and geometric character of the local microstructure, and crack path prediction can be improved by use of dimensionality reduction on subsets of high‐linear‐correlation microstructural parameters. 
    more » « less
  3. ABSTRACT Strongly anisotropic geomaterials, such as layered shales, have been observed to undergo fracture under compressive loading. This paper applies a phase‐field fracture model to study this fracture process. While phase‐field fracture models have several advantages—primarily that the fracture path is not predetermined but arises naturally from the evolution of a smooth non‐singular damage field—they provide unphysical predictions when the stress state is complex and includes compression that can cause crack faces to contact. Building on a recently developed phase‐field model that accounts for compressive traction across the crack face, this paper extends the model to the setting of anisotropic fracture. The key features of the model include the following: (1) a homogenized anisotropic elastic response and strongly anisotropic model for the work to fracture; (2) an effective damage response that accounts consistently for compressive traction across the crack face, that is derived from the anisotropic elastic response; (3) a regularized crack normal field that overcomes the shortcomings of the isotropic setting, and enables the correct crack response, both across and transverse to the crack face. To test the model, we first compare the predictions to phase‐field fracture evolution calculations in a fully resolved layered specimen with spatial inhomogeneity, and show that it captures the overall patterns of crack growth. We then apply the model to previously reported experimental observations of fracture evolution in laboratory specimens of shales under compression with confinement, and find that it predicts well the observed crack patterns in a broad range of loading conditions. We further apply the model to predict the growth of wing cracks under compression and confinement. Prior approaches to simulate wing cracks have treated the initial cracks as an external boundary, which makes them difficult to apply to general settings. Here, the effective crack response model enables us to treat the initial crack simply as a nonsingular damaged zone within the computational domain, thereby allowing for easy and general computations. 
    more » « less
  4. This study aims to detect in which microstructure conditions the Mori–Tanaka scheme is inappropriate to calculate the effective stiffness of a two-phase matrix-inclusion system.We analyze the discrepancy between numerical and Mori–Tanaka stiffness estimates in two-dimensional (2D) solids with crack-like flat cavities. The maximum transfer entropy that occurs between a microstructure feature and a stiffness component discrepancy cannot only detect the phase change between a Mori–Tanaka-like cracked solid to a non-Mori–Tanaka-like cracked solid, but also reveal at which load step that phase change first occurs and which microstructure features most affect that phase change. Further analysis with a binary classifier based on a support vector machine (SVM) algorithm shows that the systematic calculation of nine microstructure features based on six statistical crack network descriptors at each step of a loading path can inform the detection of a microstructure transition. The microstructure features identified here could thus be used to trigger the transition from one homogenization scheme to another during incremental stiffness updates, for example, during the simulation of a load path. 
    more » « less
  5. null (Ed.)
    Understanding the failure mechanisms of piezoelectric thin films is critical for the commercialization of piezoelectric microelectromechanical systems. This paper describes the failure of 0.6 mu m lead zirconate titanate (PZT) thin films on Si wafers with different in-plane stresses under large electric fields. The films failed by a combination of cracking and thermal breakdown events. It was found that the crack initiation and propagation behavior varied with the stress state of the films. The total stress required for crack initiation was estimated to be near 500 MPa. As expected, cracks propagated perpendicular to the maximum tensile stress direction. Thermal breakdown events and cracks were correlated, suggesting coupling between electrical and mechanical failure. It was also found that films that were released from the underlying substrates were less susceptible to failure by cracking. It was proposed that during electric field loading the released film stacks were able to bow and alleviate some of the stress. Released films may also experience enhanced domain wall motion that increases their fracture toughness. The results indicate that both applied stress and clamping conditions play important roles in the electromechancial failure of piezoelectric thin films. 
    more » « less