skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 1, 2026

Title: Physics-Informed Neural Network-Based Inverse Framework for Time-Fractional Differential Equations for Rheology
Inverse problems involving time-fractional differential equations have become increasingly important for modeling systems with memory-dependent dynamics, particularly in biotransport and viscoelastic materials. Despite their potential, these problems remain challenging due to issues of stability, non-uniqueness, and limited data availability. Recent advancements in Physics-Informed Neural Networks (PINNs) offer a data-efficient framework for solving such inverse problems, yet most implementations are restricted to integer-order derivatives. In this work, we develop a PINN-based framework tailored for inverse problems involving time-fractional derivatives. We consider two representative applications: anomalous diffusion and fractional viscoelasticity. Using both synthetic and experimental datasets, we infer key physical parameters including the generalized diffusion coefficient and the fractional derivative order in the diffusion model and the relaxation parameters in a fractional Maxwell model. Our approach incorporates a customized residual loss function scaled by the standard deviation of observed data to enhance robustness. Even under 25% Gaussian noise, our method recovers model parameters with relative errors below 10%. Additionally, the framework accurately predicts relaxation moduli in porcine tissue experiments, achieving similar error margins. These results demonstrate the framework’s effectiveness in learning fractional dynamics from noisy and sparse data, paving the way for broader applications in complex biological and mechanical systems.  more » « less
Award ID(s):
2141404
PAR ID:
10657252
Author(s) / Creator(s):
; ;
Publisher / Repository:
Biology
Date Published:
Journal Name:
Biology
Volume:
14
Issue:
7
ISSN:
2079-7737
Page Range / eLocation ID:
779
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Integer-order calculus fails to capture the long-range dependence (LRD) and memory effects found in many complex systems. Fractional calculus addresses these gaps through fractional-order integrals and derivatives, but fractional-order dynamical systems pose substantial challenges in system identification and optimal control tasks. In this paper, we theoretically derive the optimal control via linear quadratic regulator (LQR) for fractional-order linear time-invariant (FOLTI) systems and develop an end-to-end deep learning framework based on this theoretical foundation. Our approach establishes a rigorous mathematical model, derives analytical solutions, and incorporates deep learning to achieve data-driven optimal control of FOLTI systems. Our key contributions include: (i) proposing a novel method for system identification and optimal control strategy in FOLTI systems, (ii) developing the first end-to-end data-driven learning framework, Fractional-Order Learning for Optimal Control (FOLOC), that learns control policies from observed trajectories, and (iii) deriving theoretical bounds on the sample complexity for learning accurate control policies under fractional-order dynamics. Experimental results indicate that our method accurately approximates fractional-order system behaviors without relying on Gaussian noise assumptions, pointing to promising avenues for advanced optimal control. 
    more » « less
  2. null (Ed.)
    A plethora of complex dynamical systems from disordered media to biological systems exhibit mathematical characteristics (e.g., long-range dependence, self-similar and power law magnitude increments) that are well-fitted by fractional partial differential equations (PDEs). For instance, some biological systems displaying an anomalous diffusion behavior, which is characterized by a non-linear mean-square displacement relation, can be mathematically described by fractional PDEs. In general, the PDEs represent various physical laws or rules governing complex dynamical systems. Since prior knowledge about the mathematical equations describing complex dynamical systems in biology, healthcare, disaster mitigation, transportation, or environmental sciences may not be available, we aim to provide algorithmic strategies to discover the integer or fractional PDEs and their parameters from system's evolution data. Toward deciphering non-trivial mechanisms driving a complex system, we propose a data-driven approach that estimates the parameters of a fractional PDE model. We study the space-time fractional diffusion model that describes a complex stochastic process, where the magnitude and the time increments are stable processes. Starting from limited time-series data recorded while the system is evolving, we develop a fractional-order moments-based approach to determine the parameters of a generalized fractional PDE. We formulate two optimization problems to allow us to estimate the arguments of the fractional PDE. Employing extensive simulation studies, we show that the proposed approach is effective at retrieving the relevant parameters of the space-time fractional PDE. The presented mathematical approach can be further enhanced and generalized to include additional operators that may help to identify the dominant rule governing the measurements or to determine the degree to which multiple physical laws contribute to the observed dynamics. 
    more » « less
  3. Motivated by gradient methods in optimization theory, we give methods based onψ‐fractional derivatives of orderαin order to solve unconstrained optimization problems. The convergence of these methods is analyzed in detail. This paper also presents an Adams–Bashforth–Moulton (ABM) method for the estimation of solutions to equations involvingψ‐fractional derivatives. Numerical examples using the ABM method show that the fractional orderαand weightψare tunable parameters, which can be helpful for improving the performance of gradient descent methods. 
    more » « less
  4. In complex physical systems, conventional differential equations fall short in capturing non-local and memory effects. Fractional differential equations (FDEs) effectively model long-range interactions with fewer parameters. However, deriving FDEs from physical principles remains a significant challenge. This study introduces a stepwise data-driven framework to discover explicit expressions of FDEs directly from data. The proposed framework combines deep neural networks for data reconstruction and automatic differentiation with Gauss-Jacobi quadrature for fractional derivative approximation, effectively handling singularities while achieving fast, high-precision computations across large temporal/spatial scales. To optimize both linear coefficients and the nonlinear fractional orders, we employ an alternating optimization approach that combines sparse regression with global optimization techniques. We validate the framework on various datasets, including synthetic anomalous diffusion data, experimental data on the creep behavior of frozen soils, and single-particle trajectories modeled by Lévy motion. Results demonstrate the framework’s robustness in identifying FDE structures across diverse noise levels and its ability to capture integer order dynamics, offering a flexible approach for modeling memory effects in complex systems. 
    more » « less
  5. Abstract High fidelity models used in many science and engineering applications couple multiple physical states and parameters. Inverse problems arise when a model parameter cannot be determined directly, but rather is estimated using (typically sparse and noisy) measurements of the states. The data is usually not sufficient to simultaneously inform all of the parameters. Consequently, the governing model typically contains parameters which are uncertain but must be specified for a complete model characterization necessary to invert for the parameters of interest. We refer to the combination of the additional model parameters (those which are not inverted for) and the measured data states as the ‘complementary parameters’. We seek to quantify the relative importance of these complementary parameters to the solution of the inverse problem. To address this, we present a framework based on hyper-differential sensitivity analysis (HDSA). HDSA computes the derivative of the solution of an inverse problem with respect to complementary parameters. We present a mathematical framework for HDSA in large-scale PDE-constrained inverse problems and show how HDSA can be interpreted to give insight about the inverse problem. We demonstrate the effectiveness of the method on an inverse problem by estimating a permeability field, using pressure and concentration measurements, in a porous medium flow application with uncertainty in the boundary conditions, source injection, and diffusion coefficient. 
    more » « less