skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 1, 2026

Title: Maximum trimmed likelihood estimation for discrete multivariate Vasicek processes
The multivariate Vasicek model is commonly used to capture mean-reverting dynamics typical for short rates, asset price stochastic log-volatilities, etc. Reparametrizing the discretized problem as a VAR(1) model, the parameters are oftentimes estimated using the multivariate least squares (MLS) method, which can be susceptible to outliers. To account for potential model violations, a maximum trimmed likelihood estimation (MTLE) approach is utilized to derive a system of nonlinear estimating equations, and an iterative procedure is developed to solve the latter. In addition to robustness, our new technique allows for reliable recovery of the long-term mean, unlike existing methodologies. A set of simulation studies across multiple dimensions, sample sizes and robustness configurations are performed. MTLE outcomes are compared to those of multivariate least trimmed squares (MLTS), MLE and MLS. Empirical results suggest that MTLE not only maintains good relative efficiency for uncontaminated data but significantly improves overall estimation quality in the presence of data irregularities. Additionally, real data examples containing daily log-volatilities of six common assets (commodities and currencies) and US/Euro short rates are also analyzed. The results indicate that MTLE provides an attractive instrument for interest rate forecasting, stochastic volatility modeling, risk management and other applications requiring statistical robustness in complex economic and financial environments.  more » « less
Award ID(s):
2210929 2402544
PAR ID:
10657306
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Economies
Volume:
13
Issue:
3
ISSN:
2227-7099
Page Range / eLocation ID:
68
Subject(s) / Keyword(s):
econometric modeling autoregressive models times series analysis maximum trimmed likelihood estimation statistical robustness outliers
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We develop algorithms to automate discovery of stochastic dynamical system models from noisy, vector-valued time series. By discovery, we mean learning both a nonlinear drift vector field and a diagonal diffusion matrix for an Itô stochastic differential equation in Rd . We parameterize the vector field using tensor products of Hermite polynomials, enabling the model to capture highly nonlinear and/or coupled dynamics. We solve the resulting estimation problem using expectation maximization (EM). This involves two steps. We augment the data via diffusion bridge sampling, with the goal of producing time series observed at a higher frequency than the original data. With this augmented data, the resulting expected log likelihood maximization problem reduces to a least squares problem. We provide an open-source implementation of this algorithm. Through experiments on systems with dimensions one through eight, we show that this EM approach enables accurate estimation for multiple time series with possibly irregular observation times. We study how the EM method performs as a function of the amount of data augmentation, as well as the volume and noisiness of the data. 
    more » « less
  2. We consider the problem of constructing confidence intervals for the locations of change points in a high-dimensional mean shift model. We develop a locally refitted least squares estimator and obtain component-wise and simultaneous rates of estimation of change points. The simultaneous rate is the sharpest available by at least a factor of log p, while the component-wise one is optimal. These results enable existence of limiting distributions for the locations of the change points. Subsequently, component-wise distributions are characterized under both vanishing and non-vanishing jump size regimes, while joint distributions of change point estimates are characterized under the latter regime, which also yields asymptotic independence of these estimates. We provide the relationship between these distributions, which allows construction of regime adaptive confidence intervals. All results are established under a high dimensional scaling, in the presence of diverging number of change points. They are illustrated on synthetic data and on sensor measurements from smartphones for activity recognition. 
    more » « less
  3. This study introduces the statistical theory of using the Standardized Root Mean Squared Error (SRMR) to test close fit in ordinal factor analysis. We also compare the accuracy of confidence intervals (CIs) and tests of close fit based on the Standardized Root Mean Squared Error (SRMR) with those obtained based on the Root Mean Squared Error of Approximation (RMSEA). We use Unweighted Least Squares (ULS) estimation with a mean and variance corrected test statistic. The current (biased) implementation for the RMSEA never rejects that a model fits closely when data are binary and almost invariably rejects the model in large samples if data consist of five categories. The unbiased RMSEA produces better rejection rates, but it is only accurate enough when the number of variables is small (e.g., p = 10) and the degree of misfit is small. In contrast, across all simulated conditions, the tests of close fit based on the SRMR yield acceptable type I error rates. SRMR tests of close fit are also more powerful than those using the unbiased RMSEA. 
    more » « less
  4. Network tomography aims at estimating source–destination traffic rates from link traffic measurements. This inverse problem was formulated by Vardi in 1996 for Poisson traffic over networks operating under deterministic as well as random routing regimes. In this article, we expand Vardi's second-order moment matching rate estimation approach to higher-order cumulant matching with the goal of increasing the column rank of the mapping and consequently improving the rate estimation accuracy. We develop a systematic set of linear cumulant matching equations and express them compactly in terms of the Khatri–Rao product. Both least squares estimation and iterative minimum I-divergence estimation are considered. We develop an upper bound on the mean squared error (MSE) in least squares rate estimation from empirical cumulants. We demonstrate that supplementing Vardi's approach with the third-order empirical cumulant reduces its minimum averaged normalized MSE in rate estimation by almost 20% when iterative minimum I-divergence estimation was used. 
    more » « less
  5. We consider the problem of estimating the location of a single change point in a network generated by a dynamic stochastic block model mechanism. This model produces community structure in the network that exhibits change at a single time epoch. We propose two methods of estimating the change point, together with the model parameters, before and after its occurrence. The first employs a least-squares criterion function and takes into consideration the full structure of the stochastic block model and is evaluated at each point in time. Hence, as an intermediate step, it requires estimating the community structure based on a clustering algorithm at every time point. The second method comprises the following two steps: in the first one, a least-squares function is used and evaluated at each time point, but ignoring the community structure and only considering a random graph generating mechanism exhibiting a change point. Once the change point is identified, in the second step, all network data before and after it are used together with a clustering algorithm to obtain the corresponding community structures and subsequently estimate the generating stochastic block model parameters. The first method, since it requires knowledge of the community structure and hence clustering at every point in time, is significantly more computationally expensive than the second one. On the other hand, it requires a significantly less stringent identifiability condition for consistent estimation of the change point and the model parameters than the second method; however, it also requires a condition on the misclassification rate of misallocating network nodes to their respective communities that may fail to hold in many realistic settings. Despite the apparent stringency of the identifiability condition for the second method, we show that networks generated by a stochastic block mechanism exhibiting a change in their structure can easily satisfy this condition under a multitude of scenarios, including merging/splitting communities, nodes joining another community, etc. Further, for both methods under their respective identifiability and certain additional regularity conditions, we establish rates of convergence and derive the asymptotic distributions of the change point estimators. The results are illustrated on synthetic data. In summary, this work provides an in-depth investigation of the novel problem of change point analysis for networks generated by stochastic block models, identifies key conditions for the consistent estimation of the change point, and proposes a computationally fast algorithm that solves the problem in many settings that occur in applications. Finally, it discusses challenges posed by employing clustering algorithms in this problem, that require additional investigation for their full resolution. 
    more » « less